
From Trees to Truths: Making MCTS Talk with Logic-Backed LLMs
In the quest to make AI more trustworthy, few challenges loom larger than explaining sequential decision-making algorithms like Monte Carlo Tree Search (MCTS). Despite its success in domains from transit scheduling to game playing, MCTS remains a black box to most practitioners, generating decisions from expansive trees of sampled possibilities without accessible rationale. A new framework proposes to change that by fusing LLMs with formal logic to bring transparency and dialogue to this crucial planning tool1. ...