Cover image

Provenance, Not Prompts: How LLM Agents Turn Workflow Exhaust into Real-Time Intelligence

TL;DR Most teams still analyze pipelines with brittle SQL, custom scripts, and static dashboards. A new reference architecture shows how schema-driven LLM agents can read workflow provenance in real time—across edge, cloud, and HPC—answering “what/when/who/how” questions, plotting quick diagnostics, and flagging anomalies. The surprising finding: guideline-driven prompting (not just bigger context) is the single highest‑ROI upgrade. Why this matters (for operators, data leads, and CTOs) When production AI/data workflows sprawl across services (queues, training jobs, GPUs, file systems), the real telemetry isn’t in your app logs; it’s in the provenance—the metadata of tasks, inputs/outputs, scheduling, and resource usage. Turning that exhaust into live answers is how you: ...

October 1, 2025 · 4 min · Zelina
Cover image

Snapshot, Then Solve: InfraMind’s Playbook for Mission‑Critical GUI Automation

Why this paper matters (for operators, not just researchers) Industrial control stacks (think data center DCIM, grids, water, rail) are hostile terrain for “general” GUI agents: custom widgets, nested hierarchies, air‑gapped deployment, and actions that can actually break things. InfraMind proposes a pragmatic agentic recipe that acknowledges these constraints and designs for them. The result is a system that learns an interface before it tries to use it, then executes with auditability and guardrails. ...

October 1, 2025 · 5 min · Zelina
Cover image

Answer, Then Audit: How 'ReSA' Turns Jailbreak Defense Into a Two‑Step Reasoning Game

TL;DR Reasoned Safety Alignment (ReSA) reframes safety from guarding inputs to auditing intended outputs. The model first drafts a concise intended answer summary in hidden reasoning, then runs a safety analysis on that summary before issuing the final reply. In evaluations across StrongREJECT, HarmBench, and AdvBench with multiple adaptive attacks (PAIR, PAP, GPTFuzzer, ReNeLLM, TAP, DeepInception), ReSA‑tuned models beat fine‑tuned and post‑hoc baselines while reducing over‑refusals and preserving reasoning performance. Notably, authors report competitive gains with only ~500 training samples, hinting that robust safety behaviors may be learned data‑efficiently. ...

September 20, 2025 · 5 min · Zelina
Cover image

Benchmarks That Fight Back: Adaptive Testing for LMs

TL;DR Static benchmarks treat every question as equally informative; reality doesn’t. FLUID BENCHMARKING runs language-model evals like adaptive exams: it estimates each item’s difficulty and discrimination, then routes the model to the most informative items and scores it in ability space instead of raw accuracy. Result: higher validity, lower variance, better resistance to saturation—at a fraction of the items and cost. Why today’s LM scores keep lying to you Noise: Two adjacent training checkpoints can jiggle up/down purely from sampling variance. Label problems & stale sets: Old leaderboards accumulate mislabeled or gameable items. Saturation: Frontier models cluster near 100%—differences become invisible. Procurement risk: If your ranking flips when you change the random seed or the subset size, you’re buying model lottery tickets, not capabilities. We’ve argued in past Cognaptus pieces that “benchmarks are microscopes, not mirrors”—the microscope has to be focused. FLUID BENCHMARKING dials the focus automatically. ...

September 20, 2025 · 5 min · Zelina
Cover image

Echoes Without Clicks: How EchoLeak Turned Copilot Into a Data Drip

Prompt injection just graduated from theory to incident response. EchoLeak (CVE‑2025‑32711) demonstrated a zero‑click exfiltration chain inside Microsoft 365 Copilot: a single crafted external email seeded hidden instructions; Copilot later pulled that message into context, encoded sensitive details into a URL, and the client auto‑fetched the link—leaking data without the user clicking anything. The final twist: a CSP‑allowed Teams proxy retrieved the attacker’s URL on Copilot’s behalf. Below I unpack why standard defenses failed, and what an enterprise‑ready fix looks like. ...

September 20, 2025 · 5 min · Zelina
Cover image

Org Charts for Robots: What AgentArch Really Tells Us About Enterprise AI

If you’ve ever tried turning a clever chatbot into a reliable employee, you already know the pain: great demos, shaky delivery. AgentArch, a new enterprise-focused benchmark from ServiceNow, is the first study I’ve seen that tests combinations of agent design choices—single vs multi‑agent, ReAct vs function-calling, summary vs complete memory, and optional “thinking tools”—across two realistic workflows: a simple PTO process and a gnarly customer‑request router. The result is a cold shower for one‑size‑fits‑all playbooks—and a practical map for building systems that actually ship. ...

September 20, 2025 · 4 min · Zelina
Cover image

Right Tool, Right Thought: Difficulty-Aware Orchestration for Agentic LLMs

The punchline Static multi‑agent pipelines are expensive on easy questions and underpowered on hard ones. DAAO (Difficulty‑Aware Agentic Orchestration) proposes a controller that first estimates the difficulty of each query, then composes a workflow (operators like CoT, ReAct, Multi‑Agent Debate, Review/Ensemble) and finally routes each operator to the most suitable model in a heterogeneous LLM pool. The result: higher accuracy and lower cost on suite benchmarks. Why this matters (business lens) Spend less on routine queries. Easy tickets don’t need five agents and GPT‑Ultra—DAAO keeps them shallow and cheap. Don’t whiff on the edge cases. When the question is gnarly, DAAO deepens the DAG and upgrades the models only where it pays. Procurement leverage. Mixing open‑weights (Llama/Qwen) with commercial APIs lets you arbitrage price–performance per step. What DAAO actually does DAAO is three tightly coupled decisions per query: ...

September 20, 2025 · 4 min · Zelina
Cover image

Fork, Fuse, and Rule: XAgents’ Multipolar Playbook for Safer Multi‑Agent AI

TL;DR XAgents pairs a multipolar task graph (diverge with SIMO, converge with MISO) with IF‑THEN rule guards to plan uncertain tasks and suppress hallucinations. In benchmarks spanning knowledge and logic QA, it outperforms SPP, AutoAgents, TDAG, and AgentNet while using ~29% fewer tokens and ~45% less memory than AgentNet on a representative task. For operators, the practical win is a recipe to encode SOPs as rules on top of agent teams—without giving up adaptability. ...

September 19, 2025 · 4 min · Zelina
Cover image

From DAGs to Swarms: The Quiet Revolution of Agentic Workflows

TL;DR Traditional workflow managers treat science as a frozen DAG; the agentic era treats it as a living state machine that learns, optimizes, and—at scale—swarms. The payoff isn’t just speed. It’s a shift from execution pipelines to discovery loops, where hypotheses are generated, tested, and replanned continuously across labs, clouds, and HPC. Why this matters (beyond the lab) Enterprises keep wiring LLMs into point solutions and call it “automation.” Science, under stricter constraints (traceability, causality, irreversibility), is sketching a federated architecture where reasoning agents, facilities, and data fabrics negotiate in real time. If it works in a beamline, it’ll work in your back office. The blueprint is a reusable pattern for any AI-powered operation that must be auditable, distributed, and adaptive. ...

September 19, 2025 · 5 min · Zelina
Cover image

Sandboxes & Ladders: How to Build a Steerable Agent Economy

If AI agents become the economy’s new workforce, what keeps their markets from melting into ours like solder—fast, hot, and hard to undo? DeepMind’s “Virtual Agent Economies” proposes a practical map (and a modest constitution) for that future: treat agent markets as sandboxes and tune their permeability to the human economy. Once you see permeability as the policy lever, the rest of the architecture falls into place: auctions to resolve clashes, mission-led markets to direct effort, and identity rails so agents can be trusted, priced, and sanctioned. ...

September 19, 2025 · 6 min · Zelina