Cover image

Speaking Fed with Confidence: How LLMs Decode Monetary Policy Without Guesswork

The Market-Moving Puzzle of Fedspeak When the U.S. Federal Reserve speaks, markets move. But the Fed’s public language—often called Fedspeak—is deliberately nuanced, shaping expectations without making explicit commitments. Misinterpreting it can cost billions, whether in trading desks’ misaligned bets or policymakers’ mistimed responses. Even top-performing LLMs like GPT-4 can classify central bank stances (hawkish, dovish, neutral), but without explaining their reasoning or flagging when they might be wrong. In high-stakes finance, that’s a liability. ...

August 12, 2025 · 3 min · Zelina
Cover image

Breaking the Question Apart: How Compositional Retrieval Reshapes RAG Performance

In the world of Retrieval-Augmented Generation (RAG), most systems still treat document retrieval like a popularity contest — fetch the most relevant-looking text and hope the generator can stitch the answer together. But as any manager who has tried to merge three half-baked reports knows, relevance without completeness is a recipe for failure. A new framework, Compositional Answer Retrieval (CAR), aims to fix that. Instead of asking a retrieval model to find a single “best” set of documents, CAR teaches it to think like a strategist: break the question into its components, retrieve for each, and then assemble the pieces into a coherent whole. ...

August 11, 2025 · 3 min · Zelina
Cover image

Scalpels Not Sledgehammers: A New Era of Precision Editing for LLMs

Most LLM editing approaches operate like sledgehammers—bluntly rewriting model weights and praying generalization holds. But a new method, Latent Knowledge Scalpel (LKS), dares to be surgical. Rather than changing the model itself, it targets how the model thinks—rewriting entity representations in the hidden layers, like swapping memories without touching the brain. From Entities to Knowledge Blocks The authors begin with a provocative observation: the internal representation (embedding) of an entity like “Alfred Nobel” doesn’t just encode a name, but a structured, meaningful knowledge block (KB). These latent vectors reflect factual associations like birthplace or occupation, and remarkably, they retain semantic and syntactic structures. For instance, swapping Nobel’s KB with that of “Shelley” shifts the model’s predicted birthplace from Sweden to England—even though the prompt wasn’t changed. ...

August 7, 2025 · 4 min · Zelina
Cover image

Don't Trust. Verify: Fighting Financial Hallucinations with FRED

When ChatGPT makes up a statistic or misstates a date, it’s annoying. But when a financial assistant claims the wrong interest expense or misattributes a revenue source, it could move markets or mislead clients. This is the stark reality FRED confronts head-on. FRED—short for Financial Retrieval-Enhanced Detection and Editing—is a framework fine-tuned to spot and fix factual errors in financial LLM outputs. Developed by researchers at Pegasi AI, it isn’t just another hallucination detection scheme. It’s an auditor with a domain-specific brain. ...

July 29, 2025 · 3 min · Zelina
Cover image

Fake News Feels Different: How SEER Uses Emotion and Semantics to Spot Deception

The latest advancement in fake news detection doesn’t just analyze what is said—it also looks at how it feels. The SEER model (Semantic Enhancement and Emotional Reasoning Network) introduces an innovative approach that harnesses emotional reasoning and semantic depth to surpass existing benchmarks in multimodal fake news detection. 🧠 Beyond Consistency: The Emotional Gap in Fake News Traditionally, models focus on image-text consistency: does the photo match the caption? But this misses the forest for the trees. Fake news isn’t just mismatched—it’s emotionally manipulative. ...

July 21, 2025 · 3 min · Zelina
Cover image

Threading the Needle: How GRAFT Reinvents Document Translation with DAGs and LLM Agents

Document-level machine translation (DocMT) has long been riddled with a paradox: while LLMs can translate fluent paragraphs and even simulate discourse, they often falter at stitching meaning across paragraphs. Pronouns go adrift, tenses waver, and terminology mutates like a broken telephone game. The new paper GRAFT: A Graph-based Flow-aware Agentic Framework for Document-level Machine Translation proposes an ambitious fix: treat a document not as a sequence, but as a graph — and deploy a team of LLM agents to navigate it. ...

July 12, 2025 · 4 min · Zelina
Cover image

The Grammar and the Glow: Making Sense of Time-Series AI

The Grammar and the Glow: Making Sense of Time-Series AI What if time-series data had a grammar, and AI could read it? That idea is no longer poetic conjecture—it now has theoretical teeth and practical implications. Two recent papers offer a compelling convergence: one elevates interpretability in time-series AI through heatmap fusion and NLP narratives, while the other proposes that time itself forms a latent language with motifs, tokens, and even grammar. Read together, they suggest a future where interpretable AI is not just about saliency maps or attention—it becomes a linguistically grounded system of reasoning. ...

July 2, 2025 · 4 min · Zelina