Cover image

Provenance, Not Prompts: How LLM Agents Turn Workflow Exhaust into Real-Time Intelligence

TL;DR Most teams still analyze pipelines with brittle SQL, custom scripts, and static dashboards. A new reference architecture shows how schema-driven LLM agents can read workflow provenance in real time—across edge, cloud, and HPC—answering “what/when/who/how” questions, plotting quick diagnostics, and flagging anomalies. The surprising finding: guideline-driven prompting (not just bigger context) is the single highest‑ROI upgrade. Why this matters (for operators, data leads, and CTOs) When production AI/data workflows sprawl across services (queues, training jobs, GPUs, file systems), the real telemetry isn’t in your app logs; it’s in the provenance—the metadata of tasks, inputs/outputs, scheduling, and resource usage. Turning that exhaust into live answers is how you: ...

October 1, 2025 · 4 min · Zelina
Cover image

Tool Wars, Protocol Peace: What MCP‑AgentBench Really Measures

TL;DR MCP‑AgentBench is the first broad benchmark that evaluates language agents inside the Model Context Protocol (MCP) rather than with ad‑hoc function calls. It sets up 33 MCP servers with 188 tools and runs 600 goal‑oriented queries across six task patterns. Results flip a few assumptions: open‑source leaders (notably Qwen3‑235B‑A22B) can top the table under the ReAct style, while Claude 4 Sonnet shines with native tool‑calling. Token budgets matter: o3‑mini posts the best performance‑per‑token among big names. The meta‑lesson for builders: your agent’s interaction style must match the model and benchmarks must reward outcome, not ritual. ...

September 19, 2025 · 5 min · Zelina
Cover image

Tool Time, Any Time: Inside RLFactory’s Plug‑and‑Play RL for Multi‑Turn Tool Use

Large language models are finally learning to work the tools instead of merely talking about them. RLFactory proposes a clean way to post‑train LLMs for multi‑turn tool use by rebuilding the reinforcement learning loop around tool feedback, not just text. The result: quicker training, higher stability, and a framework teams can actually adopt. Why this matters (and where prior setups struggle) Most RL-for-LLMs treat the environment as pure text: the model thinks, emits tokens, gets a scalar reward. But real tasks—searching, querying databases, compiling code, booking travel—depend on external tools that return structured results, fail intermittently, and vary in latency and format. Hard problems emerge: ...

September 13, 2025 · 4 min · Zelina
Cover image

From PDF to PI: Turning Papers into Productive Agents

We’ve all met the paper that promises the moon—then hands you a README, a maze of conda environments, and a prayer. Paper2Agent proposes a different contract: don’t read me, run me. By converting a research paper (and its repo) into a Model Context Protocol (MCP) server that any LLM agent can call, it turns methods into tools, figures into reproducible tests, and “future work” into executable prompts. This isn’t another “Papers with Code” link farm. It’s a pipeline that (1) mines the repo/tutorials, (2) builds a pinned environment, (3) extracts single‑purpose tools with clear I/O, (4) tests them until they match the paper’s outputs, and (5) deploys the lot as a remote MCP server. Hook that server to your favorite coding/chat agent and you get a paper‑specific copilot that can reproduce, explain, and extend the work. ...

September 12, 2025 · 4 min · Zelina
Cover image

Control Plane, Not Pain: How Agentic OS Turns Linux Scheduling into a Semantic Service

The Big Idea Operating systems have always struggled with a silent mismatch: the kernel’s scheduler doesn’t know what your application actually wants. SchedCP proposes a clean solution—turn scheduling into a semantic control plane. AI agents reason about what a workload needs; the system safely handles how to observe and act via eBPF-based schedulers. This division keeps LLMs out of the hot path while letting them generate and refine policies that actually fit the job. ...

September 4, 2025 · 3 min · Zelina
Cover image

ReAct Without the Chaos: AgentScope 1.0 Turns Tools into Strategy

Thesis: AgentScope 1.0 is less a toolkit and more a discipline for agentic software. By pinning everything to ReAct loops, unifying “message–model–memory–tool,” and adding group-wise tool provisioning, it addresses the real failure mode of agents in production: tool sprawl without control. The evaluation/Studio/runtime trio then turns prototypes into shippable services. What’s actually new (and why it matters) 1) A crisp core: Message → Model → Memory → Tool Most frameworks blur these into ad‑hoc objects; AgentScope forces a clean, composable boundary: ...

August 25, 2025 · 4 min · Zelina
Cover image

USB‑C for Agents, Stress‑Tested: What MCP‑Universe Really Reveals

The pitch: a unified plug—and a tougher test The Model Context Protocol (MCP) is often described as the “USB‑C of AI tools”: one standardized way for agents to talk to external services (maps, finance data, browsers, repos, etc.). MCP‑Universe, a new benchmark from Salesforce AI Research, finally stress‑tests that idea with real MCP servers rather than toy mocks. It derives success from execution outcomes, not multiple‑choice guesswork—exactly what enterprises need to trust automation. ...

August 23, 2025 · 4 min · Zelina
Cover image

Agents on the Wire: Protocols, Memory, and Guardrails for Real-World Agentic AI

TL;DR Agentic AI is moving from toy demos to systems that must coordinate, persist memory, and interoperate across teams and services. A new survey maps the landscape—frameworks (LangGraph, CrewAI, AutoGen, Semantic Kernel, Agno, Google ADK, MetaGPT), communication protocols (MCP, ACP, A2A, ANP, Agora), and the fault lines that still block production scale. This article distills what’s ready now, what breaks in production, and how to architect for the protocols coming next. ...

August 18, 2025 · 6 min · Zelina
Cover image

Agents Under Siege: How LLM Workflows Invite a New Breed of Cyber Threats

Agents Under Siege: How LLM Workflows Invite a New Breed of Cyber Threats From humble prompt-followers to autonomous agents capable of multi-step tool use, LLM-powered systems have evolved rapidly in just two years. But with this newfound capability comes a vulnerability surface unlike anything we’ve seen before. The recent survey paper From Prompt Injections to Protocol Exploits presents the first end-to-end threat model of these systems, and it reads like a cybersecurity nightmare. ...

July 1, 2025 · 4 min · Zelina