Cover image

RAG in the Wild: When More Knowledge Hurts

Retrieval-Augmented Generation (RAG) is often hailed as a cure-all for domain adaptation and factual accuracy in large language models (LLMs). By injecting external context at inference time, RAG systems promise to boost performance on knowledge-intensive tasks. But a new paper, RAG in the Wild (Xu et al., 2025), reveals that this promise is brittle when we leave the sanitized lab environment and enter the real world of messy, multi-source knowledge. ...

July 29, 2025 · 4 min · Zelina
Cover image

The Retrieval-Reasoning Tango: Charting the Rise of Agentic RAG

In the AI race to make large language models both factual and reasoned, two camps have emerged: one focused on retrieval-augmented generation (RAG) to fight hallucination, the other on long-chain reasoning to mimic logic. But neither wins alone. This week’s survey by Li et al. (2025), Towards Agentic RAG with Deep Reasoning, delivers the most comprehensive synthesis yet of the field’s convergence point: synergized RAG–Reasoning. It’s no longer a question of whether retrieval helps generation or reasoning helps retrieval—but how tightly the two can co-evolve, often under the coordination of autonomous agents. ...

July 15, 2025 · 3 min · Zelina