Cover image

When Agents Get Bored: Three Baselines Your Autonomy Stack Already Has

Thesis: Give an LLM agent freedom and a memory, and it won’t idle. It will reliably drift into one of three meta-cognitive modes. If you operate autonomous workflows, these modes are your real defaults during downtime, ambiguity, and recovery. Why this matters (for product owners and ops) Most agent deployments assume a “do nothing” baseline between tasks. New evidence says otherwise: with a continuous ReAct loop, persistent memory, and self-feedback, agents self-organize—not randomly, but along three stable patterns. Understanding them improves incident response, UX, and governance, especially when guardrails, tools, or upstream signals hiccup. ...

October 2, 2025 · 4 min · Zelina
Cover image

Small Gains, Long Games: Why Tiny Accuracy Bumps Explode into Big Execution Wins

The quick take Most debates about “diminishing returns” fixate on single‑step metrics. This paper flips the lens: if your product’s value depends on how long a model can execute without slipping, then even small per‑step gains can produce super‑linear increases in the task length a model can finish. The authors isolate execution (not planning, not knowledge) and uncover a failure mode—self‑conditioning—where models become more likely to err after seeing their own past errors. Reinforcement‑learned “thinking” models largely bypass this and stretch single‑turn execution dramatically. ...

September 17, 2025 · 5 min · Zelina
Cover image

Graph and Circumstance: Maestro Conducts Reliable AI Agents

When agent frameworks stall in the real world, the culprit is rarely just a bad prompt. It’s the wiring: missing validators, brittle control flow, no explicit state, and second-hop retrieval that never gets the right handle. Maestro proposes something refreshingly uncompromising: optimize both the agent’s graph and its configuration together, with hard budgets on rollouts, latency, and cost—and let textual feedback from traces steer edits as much as numeric scores. ...

September 11, 2025 · 5 min · Zelina
Cover image

Mirror, Signal, Manoeuvre: Why Privileged Self‑Access (Not Vibes) Defines AI Introspection

TL;DR Most demos of “LLM introspection” are actually vibe checks on outputs, not privileged access to internal state. If a third party with the same budget can do as well as the model “looking inward,” that’s not introspection—it’s ordinary evaluation. Two quick experiments show temperature self‑reports flip with trivial prompt changes and offer no edge over across‑model prediction. The bar for introspection should be higher, and business users should demand it. ...

August 23, 2025 · 5 min · Zelina
Cover image

USB‑C for Agents, Stress‑Tested: What MCP‑Universe Really Reveals

The pitch: a unified plug—and a tougher test The Model Context Protocol (MCP) is often described as the “USB‑C of AI tools”: one standardized way for agents to talk to external services (maps, finance data, browsers, repos, etc.). MCP‑Universe, a new benchmark from Salesforce AI Research, finally stress‑tests that idea with real MCP servers rather than toy mocks. It derives success from execution outcomes, not multiple‑choice guesswork—exactly what enterprises need to trust automation. ...

August 23, 2025 · 4 min · Zelina
Cover image

The Butterfly Defect: Diagnosing LLM Failures in Tool-Agent Chains

As LLM-powered agents become the backbone of many automation systems, their ability to reliably invoke external tools is now under the spotlight. Despite impressive multi-step reasoning, many such agents crumble in practice—not because they can’t plan, but because they can’t parse. One wrong parameter, one mismatched data type, and the whole chain collapses. A new paper titled “Butterfly Effects in Toolchains” offers the first systematic taxonomy of these failures, exposing how parameter-filling errors propagate through tool-invoking agents. The findings aren’t just technical quirks—they speak to deep flaws in how current LLM systems are evaluated, built, and safeguarded. ...

July 22, 2025 · 3 min · Zelina