Cover image

When LLMs Learn Too Well: Memorization Isn’t a Bug, It’s a System Risk

Opening — Why this matters now Large language models are no longer judged by whether they work, but by whether we can trust how they work. In regulated domains—finance, law, healthcare—the question is no longer abstract. It is operational. And increasingly uncomfortable. The paper behind this article tackles an issue the industry prefers to wave away with scale and benchmarks: memorization. Not the vague, hand-wavy version often dismissed as harmless, but a specific, measurable phenomenon that quietly undermines claims of generalization, privacy, and robustness. ...

February 10, 2026 · 3 min · Zelina
Cover image

World Models Meet the Office From Hell

Opening — Why this matters now Enterprise AI has entered an awkward phase. On paper, frontier LLMs can reason, plan, call tools, and even complete multi-step tasks. In practice, they quietly break things. Not loudly. Not catastrophically. Just enough to violate a policy, invalidate a downstream record, or trigger a workflow no one notices until audit season. ...

January 30, 2026 · 4 min · Zelina
Cover image

Attention Is All the Agents Need

Opening — Why this matters now Inference-time scaling has quietly replaced parameter scaling as the most interesting battleground in large language models. With trillion-parameter training runs yielding diminishing marginal returns, the industry has pivoted toward how models think together, not just how big they are. Mixture-of-Agents (MoA) frameworks emerged as a pragmatic answer: run multiple models, stack their outputs, and hope collective intelligence beats individual brilliance. It worked—up to a point. But most MoA systems still behave like badly moderated panel discussions: everyone speaks, nobody listens. ...

January 26, 2026 · 4 min · Zelina
Cover image

When the Right Answer Is No Answer: Teaching AI to Refuse Messy Math

Opening — Why this matters now Multimodal models have become unnervingly confident readers of documents. Hand them a PDF, a scanned exam paper, or a photographed worksheet, and they will happily extract text, diagrams, and even implied structure. The problem is not what they can read. It is what they refuse to unread. In real classrooms, mathematics exam papers are not pristine artifacts. They are scribbled on, folded, stained, partially photographed, and occasionally vandalized by enthusiastic graders. Yet most document benchmarks still assume a polite world where inputs are complete and legible. This gap matters. An AI system that confidently invents missing math questions is not merely wrong—it is operationally dangerous. ...

January 18, 2026 · 4 min · Zelina
Cover image

EvoFSM: Teaching AI Agents to Evolve Without Losing Their Minds

Opening — Why this matters now Agentic AI has entered its teenage years: curious, capable, and dangerously overconfident. As LLM-based agents move from toy demos into deep research—multi-hop reasoning, evidence aggregation, long-horizon decision-making—the industry has discovered an uncomfortable truth. Fixed workflows are too rigid, but letting agents rewrite themselves freely is how you get hallucinations with a superiority complex. ...

January 15, 2026 · 3 min · Zelina
Cover image

Judging the Judges: When AI Evaluation Becomes a Fingerprint

Opening — Why this matters now LLM-as-judge has quietly become infrastructure. It ranks models, filters outputs, trains reward models, and increasingly decides what ships. The industry treats these judges as interchangeable instruments—different thermometers measuring the same temperature. This paper suggests that assumption is not just wrong, but dangerously so. Across thousands of evaluations, LLM judges show near-zero agreement with each other, yet striking consistency with themselves. They are not noisy sensors of a shared truth. They are stable, opinionated evaluators—each enforcing its own private theory of quality. ...

January 10, 2026 · 4 min · Zelina
Cover image

Agents Gone Rogue: Why Multi-Agent AI Quietly Falls Apart

Opening — Why this matters now Multi-agent AI systems are having their moment. From enterprise automation pipelines to financial analysis desks, architectures built on agent collaboration promise scale, specialization, and autonomy. They work beautifully—at first. Then something subtle happens. Six months in, accuracy slips. Agents talk more, decide less. Human interventions spike. No code changed. No model was retrained. Yet performance quietly erodes. This paper names that phenomenon with unsettling clarity: agent drift. ...

January 8, 2026 · 4 min · Zelina
Cover image

Benchmarks on Quicksand: Why Static Scores Fail Living Models

Opening — Why this matters now If you feel that every new model release breaks yesterday’s leaderboard, congratulations: you’ve discovered the central contradiction of modern AI evaluation. Benchmarks were designed for stability. Models are not. The paper you just uploaded dissects this mismatch with academic precision—and a slightly uncomfortable conclusion: static benchmarks are no longer fit for purpose. ...

December 15, 2025 · 3 min · Zelina
Cover image

When Agents Get Bored: Three Baselines Your Autonomy Stack Already Has

Thesis: Give an LLM agent freedom and a memory, and it won’t idle. It will reliably drift into one of three meta-cognitive modes. If you operate autonomous workflows, these modes are your real defaults during downtime, ambiguity, and recovery. Why this matters (for product owners and ops) Most agent deployments assume a “do nothing” baseline between tasks. New evidence says otherwise: with a continuous ReAct loop, persistent memory, and self-feedback, agents self-organize—not randomly, but along three stable patterns. Understanding them improves incident response, UX, and governance, especially when guardrails, tools, or upstream signals hiccup. ...

October 2, 2025 · 4 min · Zelina
Cover image

Small Gains, Long Games: Why Tiny Accuracy Bumps Explode into Big Execution Wins

The quick take Most debates about “diminishing returns” fixate on single‑step metrics. This paper flips the lens: if your product’s value depends on how long a model can execute without slipping, then even small per‑step gains can produce super‑linear increases in the task length a model can finish. The authors isolate execution (not planning, not knowledge) and uncover a failure mode—self‑conditioning—where models become more likely to err after seeing their own past errors. Reinforcement‑learned “thinking” models largely bypass this and stretch single‑turn execution dramatically. ...

September 17, 2025 · 5 min · Zelina