Cover image

Lost in Translation: When 14% WER Hides a 44% Failure Rate

Opening — Why this matters now Speech recognition systems proudly advertise single-digit Word Error Rates (WER). Investors nod. Product teams ship. Procurement signs off. And then a user says: “I’m on Arguello.” In controlled benchmarks, modern ASR systems look nearly flawless. In real deployments—ride-hailing, emergency dispatch, mobility services—they frequently mis-transcribe the one token that anchors the entire request: the street name. ...

February 13, 2026 · 4 min · Zelina
Cover image

No More ‘Trust Me, Bro’: Statistical Parsing Meets Verifiable Reasoning

Opening — Why This Matters Now Large language models can write poetry, draft contracts, and explain quantum mechanics. They can also invent citations, reverse cause and effect, and assert nonsense with unnerving confidence. In low-stakes environments, that’s charming. In high-stakes domains—finance, compliance, medicine, law—it’s disqualifying. The core problem is not fluency. It’s verification. The paper “Statistical Parsing for Logical Information Retrieval” (Coppola, 2026) proposes something unfashionable yet quietly radical: reintroduce formal logic into NLP—but do it in a way that scales with computation, not linguists. ...

February 13, 2026 · 5 min · Zelina
Cover image

Proof Over Probabilities: Why AI Oversight Needs a Judge That Can Do Math

Opening — Why This Matters Now AI agents are no longer politely answering questions. They are booking flights, moving money, editing codebases, sharing files, and occasionally hallucinating with confidence that would impress a venture capitalist. As agents gain autonomy, the question shifts from “Can they do it?” to “Can we trust what they did?” ...

February 13, 2026 · 5 min · Zelina
Cover image

See, Plan, Snap: Why AI Can Think in Blocks but Can’t Drop Them

Opening — Why this matters now AI agents are learning to use computers the way humans do: by looking at screens and clicking things. In demos, they book flights, fill forms, navigate desktops, and even write code. The narrative is simple: “LLMs can now operate software.” But here’s the inconvenient question: can they actually build something through a graphical interface? ...

February 13, 2026 · 5 min · Zelina
Cover image

Think Like a Scientist: When LLMs Stop Guessing and Start Reasoning

Opening — Why This Matters Now We are entering an era where AI doesn’t just predict outcomes — it proposes laws. From materials discovery to climate modeling, the promise of symbolic regression is intoxicating: feed in data, and out comes an interpretable equation. Not a black box. Not a neural blob. A formula. Large language models (LLMs) have recently joined this race. Armed with broad scientific priors, they can synthesize candidate expressions that would take classical evolutionary search hours to stumble upon. ...

February 13, 2026 · 5 min · Zelina
Cover image

Thinking About Thinking: When LLMs Start Writing Their Own Report Cards

Opening — Why This Matters Now For the past two years, reinforcement learning has been the quiet architect behind the reasoning leap of large language models (LLMs). We reward them when they land the right answer. They get better at landing the right answer. Efficient. Scalable. And slightly naive. Because if you only reward the final answer, you are implicitly saying: “I don’t care how you think — just get it right.” ...

February 13, 2026 · 5 min · Zelina
Cover image

Too Much Spice, Not Enough Soul: When LLMs Cook Without Culture

Opening — Why This Matters Now Large Language Models are increasingly tasked with generating culture. Not summarizing it. Not translating it. Generating it. From marketing copy to brand storytelling, from music to visual art—LLMs are being positioned as creative collaborators. But creativity without grounding is just noise with confidence. A recent study titled “Can LLMs Cook Jamaican Couscous?” asks a deceptively simple question: can LLMs adapt a culturally rooted artifact—like a Moroccan dish—into a Jamaican variant in a way that reflects meaningful cultural distance? fileciteturn0file0 ...

February 13, 2026 · 5 min · Zelina
Cover image

When 256 Dimensions Pretend to Be 16: The Quiet Overengineering of Vision-Language Segmentation

Opening — Why This Matters Now Edge AI is no longer a research toy. It’s a procurement decision. From factory-floor defect detection to AR glasses and mobile robotics, the question is no longer “Can we segment anything with text?” It’s “Can we do it without burning 400MB of VRAM on a text encoder that mostly reads padding?” ...

February 13, 2026 · 5 min · Zelina
Cover image

When Agents Hesitate: Smarter Test-Time Scaling for Web AI

Opening — Why This Matters Now Test-time scaling has quietly become the favorite trick in the LLM playbook. When a model hesitates, we sample more. When it errs, we vote. When voting looks messy, we arbitrate. More tokens, more reasoning, more safety—at least in theory. But here is the uncomfortable reality: autonomous agents are not single-shot exam takers. They are multi-step decision-makers operating in messy, stateful environments. And in long-horizon tasks—like navigating websites, submitting forms, or managing enterprise dashboards—small per-step errors compound into irreversible failures. ...

February 13, 2026 · 5 min · Zelina
Cover image

When Models Police Themselves: The Architecture of Internal AI Oversight

Opening — Why this matters now Enterprise AI has officially graduated from “clever chatbot” to “operational actor.” Models now draft contracts, approve transactions, summarize regulatory filings, generate code, and increasingly trigger downstream automation. And yet, most organizations still govern them like interns. The paper behind this analysis proposes a structural shift: instead of relying solely on external guardrails, audits, or prompt constraints, it explores how models can internally monitor and correct themselves—detecting inconsistencies, contradictions, or unsafe reasoning before outputs leave the system. ...

February 13, 2026 · 4 min · Zelina