Jack of All Trades, Master of AGI? Rethinking the Future of Multi-Domain AI Agents

What will the future AI agent look like—a collection of specialized tools or a Swiss army knife of intelligence? As researchers and builders edge closer to Artificial General Intelligence (AGI), the design and structure of multi-domain agents becomes both a technical and economic question. Recent proposals like NGENT1 highlight a clear vision: agents that can simultaneously perceive, plan, act, and learn across text, vision, robotics, emotion, and decision-making. But is this convergence inevitable—or even desirable? ...

May 2, 2025 · 4 min

Traces of War: Surviving the LLM Arms Race

Traces of War: Surviving the LLM Arms Race The AI frontier is heating up—not just in innovation, but in protectionism. As open-source large language models (LLMs) flood the field, a parallel move is underway: foundation model providers are fortifying their most powerful models behind proprietary walls. A new tactic in this defensive strategy is antidistillation sampling—a method to make reasoning traces unlearnable for student models without compromising their usefulness to humans. It works by subtly modifying the model’s next-token sampling process so that each generated token is still probable under the original model but would lead to higher loss if used to fine-tune a student model. This is done by incorporating gradients from a proxy student model and penalizing tokens that improve the student’s learning. In practice, this significantly reduces the effectiveness of distillation. For example, in benchmarks like GSM8K and MATH, models distilled from antidistilled traces performed 40–60% worse than those trained on regular traces—without harming the original teacher’s performance. ...

April 19, 2025 · 5 min

Outrun the Herd, Not the Lion: A Smarter AI Strategy for Business Games

In the wild, survival doesn’t require you to outrun the lion—it just means outrunning the slowest gazelle. Surprisingly, this logic also applies to business strategy. When we introduce AI into business decision-making, we’re not just dealing with isolated optimization problems—we’re engaging in a complex game, with rivals, competitors, and market players who also make moves. One key trap in this game is assuming that opponents are perfect. That assumption sounds safe—but it can be paralyzing. ...

April 13, 2025 · 6 min