Cover image

When Models Remember Too Much: The Quiet Problem of Memorization Sinks

Opening — Why this matters now Large language models are getting better at everything—writing, coding, reasoning, and politely apologizing when they hallucinate. Yet beneath these broad performance gains lies a quieter, more structural issue: memorization does not happen evenly. Some parts of the training data exert disproportionate influence, acting as gravitational wells that trap model capacity. These are what the paper terms memorization sinks. ...

January 23, 2026 · 3 min · Zelina
Cover image

Auditing the Illusion of Forgetting: When Unlearning Isn’t Enough

Opening — Why this matters now “Right to be forgotten” has quietly become one of the most dangerous phrases in AI governance. On paper, it sounds clean: remove a user’s data, comply with regulation, move on. In practice, modern large language models (LLMs) have turned forgetting into a performance art. Models stop saying what they were trained on—but continue remembering it internally. ...

January 22, 2026 · 4 min · Zelina
Cover image

DISARM, but Make It Agentic: When Frameworks Start Doing the Work

Opening — Why this matters now Foreign Information Manipulation and Interference (FIMI) has quietly evolved from a niche security concern into a persistent, high‑tempo operational problem. Social media platforms now host influence campaigns that are faster, cheaper, and increasingly AI‑augmented. Meanwhile, defenders are expected to produce timely, explainable, and interoperable assessments—often across national and institutional boundaries. ...

January 22, 2026 · 4 min · Zelina
Cover image

Many Minds, One Solution: Why Multi‑Agent AI Finds What Single Models Miss

Opening — Why this matters now Multi-agent LLM systems are everywhere: debate frameworks, critic–writer loops, role-based agents, orchestration layers stacked like an over-engineered sandwich. Empirically, they work. They reason better, hallucinate less, and converge on cleaner answers. Yet explanations usually stop at hand-waving: diversity, multiple perspectives, ensemble effects. Satisfying, perhaps—but incomplete. This paper asks a sharper question: why do multi-agent systems reach solutions that a single agent—given identical information and capacity—often cannot? And it answers it with something rare in LLM discourse: a clean operator-theoretic explanation. ...

January 22, 2026 · 4 min · Zelina
Cover image

Noise Without Regret: How Error Feedback Fixes Differentially Private Image Generation

Opening — Why this matters now Synthetic data has quietly become the backbone of privacy‑sensitive machine learning. Healthcare, surveillance, biometrics, and education all want the same thing: models that learn from sensitive images without ever touching them again. Differential privacy (DP) promises this bargain, but in practice it has been an expensive one. Every unit of privacy protection tends to shave off visual fidelity, diversity, or downstream usefulness. ...

January 22, 2026 · 4 min · Zelina
Cover image

Pay to Think: Incentive Design Is the Hidden Variable in Human–AI Research

Opening — Why this matters now Human–AI decision-making research is quietly facing a credibility problem — and it has little to do with model accuracy, explainability, or alignment. It has everything to do with incentives. As AI systems increasingly assist (or override) human judgment in domains like law, medicine, finance, and content moderation, researchers rely on empirical studies to understand how humans interact with AI advice. These studies, in turn, rely heavily on crowd workers playing the role of decision-makers. Yet one foundational design choice is often treated as an afterthought: how participants are paid. ...

January 22, 2026 · 5 min · Zelina
Cover image

When Data Can’t Travel, Models Must: Federated Transformers Meet Brain Tumor Reality

Opening — Why this matters now Medical AI has reached an awkward phase of maturity. The models are powerful, the architectures increasingly baroque, and the clinical promise undeniable. Yet the data they require—high‑dimensional, multi‑modal, deeply personal—remains stubbornly immobile. Hospitals cannot simply pool MRI scans into a central data lake without running headlong into privacy law, ethics boards, and public trust. ...

January 22, 2026 · 4 min · Zelina
Cover image

Your Agent Remembers—But Can It Forget?

Opening — Why this matters now As reinforcement learning (RL) systems inch closer to real-world deployment—robotics, autonomous navigation, decision automation—a quiet assumption keeps slipping through the cracks: that remembering is enough. Store the past, replay it when needed, act accordingly. Clean. Efficient. Wrong. The paper Memory Retention Is Not Enough to Master Memory Tasks in Reinforcement Learning dismantles this assumption with surgical precision. Its core claim is blunt: agents that merely retain information fail catastrophically once the world changes. Intelligence, it turns out, depends less on what you remember than on what you are able to forget. ...

January 22, 2026 · 4 min · Zelina
Cover image

From Talking to Living: Why AI Needs Human Simulation Computation

Opening — Why this matters now Large language models have become remarkably fluent. They explain, summarize, reason, and occasionally even surprise us. But fluency is not the same as adaptability. As AI systems are pushed out of chat windows and into open, messy, real-world environments, a quiet limitation is becoming impossible to ignore: language alone does not teach an agent how to live. ...

January 21, 2026 · 4 min · Zelina
Cover image

Lost Without a Map: Why Intelligence Is Really About Navigation

Opening — Why this matters now AI discourse is increasingly stuck in a sterile debate: how smart are large models, really? The paper you just uploaded cuts through that noise with a sharper question—what even counts as intelligence? At a time when transformers simulate reasoning, cells coordinate without brains, and agents act across virtual worlds, clinging to neuron‑centric or task‑centric definitions of intelligence is no longer just outdated—it is operationally misleading. ...

January 21, 2026 · 4 min · Zelina