Cover image

Filling the Gaps: How Bayesian Networks Learn to Guess Smarter in Intensive Care

Opening — Why this matters now Hospitals collect oceans of data, but critical care remains an island of uncertainty. In intensive care units (ICUs), patients’ vital signs change minute by minute, sensors fail, nurses skip readings, and yet clinical AI models are expected to predict life-or-death outcomes with eerie precision. The problem isn’t data scarcity — it’s missingness. When 30% of oxygen or pressure readings vanish, most machine learning systems either pretend nothing happened or fill in the blanks with statistical guesswork. That’s not science; that’s wishful thinking. ...

November 8, 2025 · 4 min · Zelina
Cover image

From Sobol to Sinkhorn: A Transport Revolution in Sensitivity Analysis

In a world where climate models span continents and economic simulators evolve across decades, it’s no longer enough to ask which variable affects the output the most. We must now ask: how does each input reshape the entire output distribution? The R package gsaot brings a mathematically rigorous answer, harnessing the power of Optimal Transport (OT) to provide a fresh take on sensitivity analysis. ...

July 27, 2025 · 3 min · Zelina