Cover image

Quantum Routes, Real Gains: When Transformers Meet CVRP

Opening — Why this matters now Routing problems are the unglamorous backbone of modern logistics. Every e‑commerce delivery, warehouse dispatch, and last‑mile optimization problem eventually collapses into some variant of the Capacitated Vehicle Routing Problem (CVRP). It is also, inconveniently, NP‑hard. Classical heuristics scale. Deep learning brings adaptability. Quantum computing promises expressivity. The uncomfortable question is whether these promises stack—or cancel each other out. ...

February 6, 2026 · 4 min · Zelina
Cover image

Attention with Doubt: Teaching Transformers When *Not* to Trust Themselves

Opening — Why this matters now Modern transformers are confident. Too confident. In high-stakes deployments—question answering, medical triage, compliance screening—this confidence routinely outruns correctness. The problem is not accuracy; it is miscalibration. Models say “I’m sure” when they shouldn’t. Most fixes arrive late in the pipeline: temperature scaling, Platt scaling, confidence rescaling after the model has already reasoned itself into a corner. What if uncertainty could intervene earlier—during reasoning rather than after the verdict? ...

February 5, 2026 · 4 min · Zelina
Cover image

When ERP Meets Attention: Teaching Transformers to Pack, Schedule, and Save Real Money

Opening — Why this matters now Enterprise Resource Planning (ERP) systems are excellent at recording what has happened. They are far less impressive at deciding what should happen next. When decision-making involves combinatorial explosions—packing furnaces, sequencing machines, allocating scarce inputs—ERP often falls back on brittle heuristics, slow solvers, or human intuition. None scale gracefully. ...

January 31, 2026 · 4 min · Zelina
Cover image

Scaling Laws Without Power Laws: Why Bigger Models Still Win

Opening — Why this matters now The scaling law debate was supposed to be settled. Bigger models, more data, more compute—loss falls predictably. Then came the uncomfortable question: what exactly is being scaled? If power laws in natural language data are the root cause, then scaling laws might be an artifact of language itself, not of learning. This paper dismantles that comfort. ...

January 17, 2026 · 3 min · Zelina
Cover image

When Tokens Become Actions: A Policy Gradient Built for Transformers

Opening — Why this matters now Reinforcement learning has always assumed that actions are atomic. Large language models politely disagree. In modern LLM training, an “action” is rarely a single move. It is a sequence of tokens, often structured, sometimes tool‑augmented, occasionally self‑reflective. Yet most policy‑gradient methods still pretend that Transformers behave like generic RL agents. The result is a growing mismatch between theory and practice—especially visible in agentic reasoning, tool use, and long‑horizon tasks. ...

December 14, 2025 · 4 min · Zelina
Cover image

When Circuits Go Atomic: Pruning Transformers One Neuron at a Time

Opening — Why this matters now Mechanistic interpretability has a scaling problem. As language models grow larger and more embedded in high‑stakes workflows, the old habit of waving at “important attention heads” is starting to look quaint. If we want to understand how models reason — not just where something lights up — we need circuit discovery methods that scale without drowning GPUs in activations or collapsing everything into blunt architectural units. ...

December 12, 2025 · 4 min · Zelina
Cover image

Circuits of Understanding: A Formal Path to Transformer Interpretability

Can we prove that we understand how a transformer works? Not just describe it heuristically, or highlight patterns—but actually trace its computations with the rigor of a math proof? That’s the ambition behind the recent paper Mechanistic Interpretability for Transformers: A Formal Framework and Case Study on Indirect Object Identification. The authors propose the first comprehensive mathematical framework for mechanistic interpretability, and they use it to dissect how a small transformer solves the Indirect Object Identification (IOI) task. What results is not just a technical tour de force, but a conceptual upgrade for the interpretability field. ...

July 30, 2025 · 3 min · Zelina
Cover image

Beyond Words: How Transformer Models Are Revolutionizing SaaS for Small Businesses

Introduction In recent years, Transformer models have redefined the field of artificial intelligence—especially in natural language processing (NLP). But their influence now stretches far beyond just language. From asset forecasting to automating enterprise tasks, Transformer architectures are laying the groundwork for a new generation of intelligent, cost-effective, and reliable SaaS platforms—especially for small businesses. This article explores: The core differences between Transformer models and traditional machine learning approaches. How Transformers are being used outside of NLP, such as in finance and quantitative trading. Most importantly, how Transformer-based models can power next-gen SaaS tailored for small firms. Transformer vs. Traditional Models: A Paradigm Shift Traditional machine learning models—such as logistic regression, decision trees, and even RNNs (Recurrent Neural Networks)—typically process data in a fixed, sequential manner. These models struggle with long-term dependencies, require hand-engineered features, and don’t generalize well across different tasks without significant tuning. ...

March 21, 2025 · 5 min · Cognaptus Insights