Cover image

Control Plane, Not Pain: How Agentic OS Turns Linux Scheduling into a Semantic Service

The Big Idea Operating systems have always struggled with a silent mismatch: the kernel’s scheduler doesn’t know what your application actually wants. SchedCP proposes a clean solution—turn scheduling into a semantic control plane. AI agents reason about what a workload needs; the system safely handles how to observe and act via eBPF-based schedulers. This division keeps LLMs out of the hot path while letting them generate and refine policies that actually fit the job. ...

September 4, 2025 · 3 min · Zelina
Cover image

Forgetting by Design: Turning GDPR into a Systems Problem for LLMs

The “right to be forgotten” (GDPR Art. 17) has always seemed like kryptonite for large language models. Once a trillion-parameter system memorizes personal data, how can it truly be erased without starting training from scratch? Most prior attempts—whether using influence functions or alignment-style fine-tuning—felt like damage control: approximate, unverifiable, and too fragile to withstand regulatory scrutiny. This new paper, Unlearning at Scale, turns the problem on its head. It argues that forgetting is not a mathematical optimization problem, but a systems engineering challenge. If training can be made deterministic and auditable, then unlearning can be handled with the same rigor as database recovery or transaction rollbacks. ...

August 19, 2025 · 3 min · Zelina