
One Model to Train Them All: How OmniTrain Rethinks Open-Vocabulary Detection
Open-vocabulary object detection — the holy grail of AI systems that can recognize anything in the wild — has been plagued by fragmented training strategies. Models like OWL-ViT and Grounding DINO stitch together multiple learning objectives across different stages. This Frankensteinian complexity not only slows progress, but also creates systems that are brittle, compute-hungry, and hard to scale. Enter OmniTrain: a refreshingly elegant, end-to-end training recipe that unifies detection, grounding, and image-text alignment into a single pass. No pretraining-finetuning sandwich. No separate heads. Just a streamlined pipeline that can scale to hundreds of thousands of concepts — and outperform specialized systems while doing so. ...