Cover image

Proof, Policy, and Probability: How DeepProofLog Rewrites the Rules of Reasoning

Opening — Why this matters now Neurosymbolic AI has long promised a synthesis: neural networks that learn, and logical systems that reason. But in practice, the two halves have been perpetually out of sync — neural systems scale but don’t explain, while symbolic systems explain but don’t scale. The recent paper DeepProofLog: Efficient Proving in Deep Stochastic Logic Programs takes a decisive step toward resolving this standoff by reframing reasoning itself as a policy optimization problem. In short, it teaches logic to think like a reinforcement learner. ...

November 12, 2025 · 4 min · Zelina
Cover image

When More Becomes Smarter: The Unreasonable Effectiveness of Scaling Agents

From repetition to reasoning When early computer-use agents (CUAs) appeared, they promised to automate tedious digital workflows—clicking through files, formatting reports, or organizing spreadsheets. Yet anyone who has tried them knows the frustration: sometimes they succeed spectacularly, sometimes they click the wrong button and crash everything. Reliability, not intelligence, has been the missing link. A recent paper from Simular Research, “The Unreasonable Effectiveness of Scaling Agents for Computer Use,” shows that scaling these agents isn’t just about more compute—it’s about how we scale. Their method, Behavior Best-of-N (bBoN), turns the brute-force idea of “run many agents and hope one works” into a structured, interpretable, and near-human-level solution. ...

October 9, 2025 · 3 min · Zelina
Cover image

One Model to Train Them All: How OmniTrain Rethinks Open-Vocabulary Detection

Open-vocabulary object detection — the holy grail of AI systems that can recognize anything in the wild — has been plagued by fragmented training strategies. Models like OWL-ViT and Grounding DINO stitch together multiple learning objectives across different stages. This Frankensteinian complexity not only slows progress, but also creates systems that are brittle, compute-hungry, and hard to scale. Enter OmniTrain: a refreshingly elegant, end-to-end training recipe that unifies detection, grounding, and image-text alignment into a single pass. No pretraining-finetuning sandwich. No separate heads. Just a streamlined pipeline that can scale to hundreds of thousands of concepts — and outperform specialized systems while doing so. ...

July 27, 2025 · 3 min · Zelina
Cover image

From Cora to Cosmos: How PyG 2.0 Scales GNNs for the Real World

Graph Neural Networks (GNNs) have come a long way since they solved Cora and PubMed node classification. But what happens when you want to model an entire traffic network, a biomedical knowledge graph, or a social graph with billions of nodes? That’s where PyG 2.0 steps in. The Industrialization of GNNs PyTorch Geometric (PyG) has been a dominant tool in the academic development of GNNs. With PyG 2.0, it graduates into the world of industrial-strength machine learning. This isn’t just a library update—it’s a fundamental re-architecture with three goals: ...

July 24, 2025 · 3 min · Zelina