When Rewards Learn to Think: Teaching Agents *How* They’re Wrong
Opening — Why this matters now Agentic AI is having a credibility problem. Not because agents can’t browse, code, or call tools—but because we still train them like they’re taking a final exam with no partial credit. Most agentic reinforcement learning (RL) systems reward outcomes, not process. Either the agent finishes the task correctly, or it doesn’t. For short problems, that’s tolerable. For long-horizon, tool-heavy reasoning tasks, it’s catastrophic. A single late-stage mistake erases an otherwise competent trajectory. ...