Cover image

When Agents Think in Waves: Diffusion Models for Ad Hoc Teamwork

Opening — Why this matters now Collaboration is the final frontier of autonomy. As AI agents move from single-task environments to shared, unpredictable ones — driving, logistics, even disaster response — the question is no longer can they act, but can they cooperate? Most reinforcement learning (RL) systems still behave like lone wolves: excellent at optimization, terrible at teamwork. The recent paper PADiff: Predictive and Adaptive Diffusion Policies for Ad Hoc Teamwork proposes a striking alternative — a diffusion-based framework where agents learn not just to act, but to anticipate and adapt, even alongside teammates they’ve never met. ...

November 11, 2025 · 3 min · Zelina
Cover image

When AI Argues Back: The Promise and Peril of Evidence-Based Multi-Agent Debate

Opening — Why this matters now The world doesn’t suffer from a lack of information—it suffers from a lack of agreement about what’s true. From pandemic rumors to political spin, misinformation now spreads faster than correction, eroding trust in institutions and even in evidence itself. As platforms struggle to moderate and fact-check at scale, researchers have begun asking a deeper question: Can AI not only detect falsehoods but also argue persuasively for the truth? ...

November 11, 2025 · 4 min · Zelina
Cover image

When AI Discovers Physics: Inside the Multi-Agent Renaissance of Scientific Machine Learning

Opening — Why this matters now Scientific discovery has always been bottlenecked by one thing: human bandwidth. In scientific machine learning (SciML), where physics meets data-driven modeling, that bottleneck shows up as painstaking trial and error—architectures tuned by hand, loss functions adjusted by intuition, and results validated by weeks of computation. Enter AgenticSciML, a new framework from Brown University that asks a radical question: What if AI could not only run the experiment, but design the method itself? ...

November 11, 2025 · 4 min · Zelina
Cover image

Cities That Think: Reasoning AI for the Urban Century

Opening — Why this matters now By 2050, nearly seven out of ten people will live in cities. Yet most urban planning tools today still operate as statistical mirrors—learning from yesterday’s data to predict tomorrow’s congestion. Predictive models can forecast traffic or emissions, but they don’t reason about why or whether those outcomes should occur. The next leap, as argued by Sijie Yang and colleagues in Reasoning Is All You Need for Urban Planning AI, is not more prediction—but more thinking. ...

November 10, 2025 · 4 min · Zelina
Cover image

The Doctor Is In: How DR. WELL Heals Multi-Agent Coordination with Symbolic Memory

Opening — Why this matters now Large language models are learning to cooperate. Or at least, they’re trying. When multiple LLM-driven agents must coordinate—say, to move objects in a shared environment or plan logistics—they often stumble over timing, misunderstanding, and sheer conversational chaos. Each agent talks too much, knows too little, and acts out of sync. DR. WELL, a new neurosymbolic framework from researchers at CMU and USC, proposes a cure: let the agents think symbolically, negotiate briefly, and remember collectively. ...

November 7, 2025 · 4 min · Zelina
Cover image

Doctor, Interrupted: How Multi-Agent AI Revives the Lost Art of Pre‑Consultation

Opening — Why this matters now The global shortage of physicians is no longer a future concern—it’s a statistical certainty. In countries representing half the world’s population, primary care consultations last five minutes or less. In China, it’s often under 4.3 minutes. A consultation this brief can barely fit a polite greeting, let alone a clinical investigation. Yet every wasted second compounds diagnostic risk, burnout, and cost. Enter pre‑consultation: the increasingly vital buffer that collects patient data before the doctor ever walks in. But even AI‑based pre‑consultation systems—those cheerful symptom checkers and chatbots—remain fundamentally passive. They wait for patients to volunteer information, and when they don’t, the machine simply shrugs in silence. ...

November 6, 2025 · 4 min · Zelina
Cover image

Who Really Runs the Workflow? Ranking Agent Influence in Multi-Agent AI Systems

Opening — Why this matters now Multi-agent systems — the so-called Agentic AI Workflows — are rapidly becoming the skeleton of enterprise-grade automation. They promise autonomy, composability, and scalability. But beneath this elegant choreography lies a governance nightmare: we often have no idea which agent is actually in charge. Imagine a digital factory of LLMs: one drafts code, another critiques it, a third summarizes results, and a fourth audits everything. When something goes wrong — toxic content, hallucinated outputs, or runaway costs — who do you blame? More importantly, which agent do you fix? ...

November 3, 2025 · 5 min · Zelina
Cover image

Agents That Build Agents: The ALITA-G Revolution

From Static Models to Self-Evolving Systems Large Language Models (LLMs) began as static entities — vast but inert collections of parameters. Over the last year, they’ve learned to act: wrapped in agentic shells with tools, memory, and feedback loops. But ALITA-G (Qiu et al., 2025) pushes further, imagining agents that don’t just act — they evolve. The paper proposes a framework for turning a general-purpose agent into a domain expert by automatically generating, abstracting, and reusing tools called Model Context Protocols (MCPs). This marks a shift from “agents that reason” to “agents that grow.” ...

November 1, 2025 · 3 min · Zelina
Cover image

Blueprints of Agency: Compositional Machines and the New Architecture of Intelligence

When the term agentic AI is used today, it often conjures images of individual, autonomous systems making plans, taking actions, and learning from feedback loops. But what if intelligence, like biology, doesn’t scale by perfecting one organism — but by building composable ecosystems of specialized agents that interact, synchronize, and co‑evolve? That’s the thesis behind Agentic Design of Compositional Machines — a sprawling, 75‑page manifesto that reframes AI architecture as a modular society of minds, not a monolithic brain. Drawing inspiration from software engineering, systems biology, and embodied cognition, the paper argues that the next generation of LLM‑based agents will need to evolve toward compositionality — where reasoning, perception, and action emerge not from larger models, but from better‑coordinated parts. ...

October 23, 2025 · 4 min · Zelina
Cover image

Fork, Fuse, and Rule: XAgents’ Multipolar Playbook for Safer Multi‑Agent AI

TL;DR XAgents pairs a multipolar task graph (diverge with SIMO, converge with MISO) with IF‑THEN rule guards to plan uncertain tasks and suppress hallucinations. In benchmarks spanning knowledge and logic QA, it outperforms SPP, AutoAgents, TDAG, and AgentNet while using ~29% fewer tokens and ~45% less memory than AgentNet on a representative task. For operators, the practical win is a recipe to encode SOPs as rules on top of agent teams—without giving up adaptability. ...

September 19, 2025 · 4 min · Zelina