Cover image

From Prompts to Policies: The Agentic RL Playbook

How a new survey formalizes the shift from RLHF’d text bots to tool-using operators—and the practical playbook for product teams. TL;DR Agentic RL reframes LLMs from one-shot text generators to policies acting in dynamic environments with planning, tool use, memory, and reflection. The paper contrasts PBRFT (preference-based RL fine-tuning) with Agentic RL via an MDP→POMDP upgrade; action space now includes text + structured actions. It organizes the space by capabilities (planning, tools, memory, self-improvement, reasoning, perception) and tasks (search, code, math, GUI, vision, embodied, multi-agent). Open challenges: trust, scalable training, and scalable environments. For builders: start with short-horizon agents (verifiable rewards), invest early in evaluation, and plan a migration path from RAG pipelines to tool-integrated reasoning (TIR) with RL. What the paper actually changes Most “LLM RL” work you’ve seen is PBRFT—optimize responses to fit human/AI preferences (RLHF/DPO/etc.). This new survey argues that real autonomy needs Agentic RL: treat the model as a policy embedded in a sequential, partially observable world. That sounds academic, but the practical consequences are huge: ...

September 4, 2025 · 5 min · Zelina
Cover image

Back to School for AGI: Memory, Skills, and Self‑Starter Instincts

Large models are passing tests, but they’re not yet passing life. A new paper proposes Experience‑driven Lifelong Learning (ELL) and introduces StuLife, a collegiate “life sim” that forces agents to remember, reuse, and self‑start across weeks of interdependent tasks. The punchline: today’s best models stumble, not because they’re too small, but because they don’t live with their own memories, skills, and goals. Why this matters now Enterprise buyers don’t want parlor tricks; they want agents that schedule, follow through, and improve. The current stack—stateless calls, long prompts—fakes continuity. ELL reframes the problem: build agents that accumulate experience, organize it as memory + skills, and act proactively when the clock or context demands it. This aligns with what we’ve seen in real deployments: token context ≠ memory; chain‑of‑thought ≠ skill; cron jobs ≠ initiative. ...

August 27, 2025 · 4 min · Zelina
Cover image

Memory With Intent: Why LLMs Need a Cognitive Workspace, Not Just a Bigger Window

TL;DR Today’s long-context and RAG systems scale storage, not thinking. Cognitive Workspace (CW) reframes memory as an active, metacognitive process: curate, plan, reuse, and consolidate. In tests, CW reports ~55–60% memory reuse and 17–18% net efficiency gains despite a 3.3× operation overhead—precisely because it thinks about what to remember and why. The Setup: Context ≠ Cognition Over the past 18 months we’ve cheered >1M-token windows and slicker attention kernels. But piling tokens into a context is like dumping files on a desk; it’s storage without stewardship. In knowledge work, what moves the needle is not how much you can “see” but how well you organize, recall, and reuse—with intent. ...

August 20, 2025 · 5 min · Zelina
Cover image

Memory Over Matter: How MemAgent Redefines Long-Context Reasoning with Reinforcement Learning

Handling long documents has always been a source of frustration for large language models (LLMs). From brittle extrapolation hacks to obscure compression tricks, the field has often settled for awkward compromises. But the paper MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent boldly reframes the problem: what if LLMs could read like humans—absorbing information chunk by chunk, jotting down useful notes, and focusing on what really matters? At the heart of MemAgent is a surprisingly elegant idea: treat memory not as an architectural afterthought but as an agent policy to be trained. Instead of trying to scale attention across millions of tokens, MemAgent introduces a reinforcement-learning-shaped overwriteable memory that allows an LLM to iteratively read arbitrarily long documents in segments. It learns—through reward signals—what to keep and what to discard. ...

July 4, 2025 · 4 min · Zelina