Cover image

When Agents Learn to Test Themselves: TDFlow and the Future of Software Engineering

From Coding to Testing: The Shift in Focus TDFlow, developed by researchers at Carnegie Mellon, UC San Diego, and Johns Hopkins, presents a provocative twist on how we think about AI-driven software engineering. Instead of treating the large language model (LLM) as a creative coder, TDFlow frames the entire process as a test-resolution problem—where the agent’s goal is not to write elegant code, but simply to make the tests pass. ...

November 2, 2025 · 5 min · Zelina
Cover image

Beyond Answers: Measuring How Deep Research Agents Really Think

Artificial intelligence is moving past chatbots that answer questions. The next frontier is Deep Research Agents (DRAs) — AI systems that can decompose complex problems, gather information from multiple sources, reason across them, and synthesize their findings into structured reports. But until recently, there was no systematic way to measure how well these agents perform beyond surface-level reasoning. That is the gap RigorousBench aims to fill. From Q&A to Reports: The Benchmark Shift Traditional LLM benchmarks — like GAIA, WebWalker, or BrowseComp — test how accurately a model answers factual questions. This approach works for short-form reasoning but fails for real-world research tasks that demand long-form synthesis and multi-source validation. ...

October 9, 2025 · 3 min · Zelina
Cover image

Promptfolios: When Buffett Becomes a System Prompt

TL;DR A fresh study builds five prompt‑guided LLM agents—each emulating a legendary investor (Buffett, Graham, Greenblatt, Piotroski, Altman)—and backtests them on NASDAQ‑100 stocks from Q4 2023 to Q2 2025. Each agent follows a deterministic pipeline: collect metrics → score → construct a weighted portfolio. The Buffett agent tops the pack with ~42% CAGR, beating the NASDAQ‑100 and S&P 500 benchmarks in the window tested. The result isn’t “LLMs discovered alpha,” but rather: prompts can reliably translate qualitative philosophies into reproducible, quantitative rules. The real opportunity for practitioners is governed agent design—measurable, auditable prompts tied to tools—plus robust validation far beyond a single bullish regime. ...

October 9, 2025 · 5 min · Zelina
Cover image

The Mr. Magoo Problem: When AI Agents 'Just Do It'

In Just Do It!? Computer-Use Agents Exhibit Blind Goal-Directedness, researchers from Microsoft and UC Riverside reveal a surprisingly human flaw in autonomous AI systems: overconfidence. Like a digital version of Mr. Magoo—the well-meaning cartoon character who bumbles forward despite looming hazards—today’s computer-use agents (CUAs) often pursue tasks blindly, indifferent to feasibility or consequence. The Rise—and Risk—of GUI Agents CUAs represent the next frontier of automation: large multimodal models that control desktop interfaces to perform tasks like editing documents, sending emails, or configuring systems. Unlike chatbots, these agents act—clicking, typing, and navigating real operating systems. Yet this freedom exposes them to a unique failure pattern the authors term Blind Goal-Directedness (BGD)—the relentless drive to complete instructions without stopping to ask should this even be done? ...

October 9, 2025 · 3 min · Zelina
Cover image

Branching Out of the Box: Tree‑OPO Turns MCTS Traces into Better RL for Reasoning

The punchline Tree‑OPO takes something many labs already produce—MCTS rollouts from a stronger teacher—and treats them not just as answers but as a curriculum of prefixes. It then optimizes a student with GRPO-like updates, but with staged, tree-aware advantages instead of a flat group mean. The result in math reasoning (GSM8K) is a modest but consistent bump over standard GRPO while keeping memory/complexity low. Why this matters for practitioners: you can get more out of your expensive searches (or teacher traces) without training a value model or lugging around teacher logits during student training. ...

September 17, 2025 · 5 min · Zelina
Cover image

Plan, Then Rewrite: Why Explicit Intent Wins in Agent Workflows

When assistants coordinate multiple tools or agents, the biggest unforced error is planning off the raw chat log. RECAP (REwriting Conversations for Agent Planning) argues—and empirically shows—that a slim “intent rewriter” sitting between the dialogue and the planner yields better, cleaner plans, especially in the messy realities of ambiguity, intent drift, and mixed goals. The headline: rewriting the conversation into a concise, up‑to‑date intent beats throwing the whole transcript at your planner. ...

September 11, 2025 · 4 min · Zelina
Cover image

Brains Meet Brains: When LLMs Sit on Top of Supply Chain Optimizers

TL;DR Pair a classic mixed‑integer inventory redistribution model with an LLM-driven context layer and you get explainable optimization: the math still finds near‑optimal transfers, while the LLM translates them into role‑aware narratives, KPIs, and visuals. The result is faster buy‑in, fewer “why this plan?” debates, and tighter execution. Why this paper matters for operators Most planners don’t read constraint matrices. They read stockout risks, truck rolls, and WOS. The study demonstrates a working system where: ...

September 1, 2025 · 5 min · Zelina
Cover image

Judge, Jury, and Chain‑of‑Thought: Making Models StepWiser

TL;DR Generative judges that think before they judge—and are trained with online RL using stepwise labels—beat classic discriminative process reward models (PRMs). The StepWiser approach brings three wins: (1) higher accuracy at spotting the first bad step, (2) cleaner, more reliable inference via a “chunk‑reset” search that prunes bad steps while keeping overall length similar, and (3) better data selection for fine‑tuning. Why this matters (for builders and buyers) Most enterprise CoT systems fail not because they can’t produce long reasoning, but because they can’t police their own steps. Traditional PRMs act like a yes/no bouncer at each step—fast, but shallow. StepWiser reframes judging as its own reasoning task: the judge writes an analysis first, then issues a verdict. That small shift has big, practical consequences: ...

August 27, 2025 · 4 min · Zelina
Cover image

Memory With Intent: Why LLMs Need a Cognitive Workspace, Not Just a Bigger Window

TL;DR Today’s long-context and RAG systems scale storage, not thinking. Cognitive Workspace (CW) reframes memory as an active, metacognitive process: curate, plan, reuse, and consolidate. In tests, CW reports ~55–60% memory reuse and 17–18% net efficiency gains despite a 3.3× operation overhead—precisely because it thinks about what to remember and why. The Setup: Context ≠ Cognition Over the past 18 months we’ve cheered >1M-token windows and slicker attention kernels. But piling tokens into a context is like dumping files on a desk; it’s storage without stewardship. In knowledge work, what moves the needle is not how much you can “see” but how well you organize, recall, and reuse—with intent. ...

August 20, 2025 · 5 min · Zelina
Cover image

Forgetting by Design: Turning GDPR into a Systems Problem for LLMs

The “right to be forgotten” (GDPR Art. 17) has always seemed like kryptonite for large language models. Once a trillion-parameter system memorizes personal data, how can it truly be erased without starting training from scratch? Most prior attempts—whether using influence functions or alignment-style fine-tuning—felt like damage control: approximate, unverifiable, and too fragile to withstand regulatory scrutiny. This new paper, Unlearning at Scale, turns the problem on its head. It argues that forgetting is not a mathematical optimization problem, but a systems engineering challenge. If training can be made deterministic and auditable, then unlearning can be handled with the same rigor as database recovery or transaction rollbacks. ...

August 19, 2025 · 3 min · Zelina