The Reasoning Gymnasium: How Zero-Sum Games Shape Smarter LLMs

If the future of reasoning in large language models (LLMs) doesn’t lie in human-tweaked datasets or carefully crafted benchmarks, where might it emerge? According to SPIRAL, a recent framework introduced by Bo Liu et al., the answer is clear: in games. SPIRAL (Self-Play on zero-sum games Incentivizes Reasoning via multi-Agent muLti-turn reinforcement learning) proposes that competitive, turn-based, two-player games can become a reasoning gymnasium for LLMs. It provides an automated and scalable path for cognitive skill acquisition, sidestepping human-curated data and rigid reward functions. ...

July 1, 2025 · 4 min · Zelina

When Text Doesn’t Help: Rethinking Multimodality in Forecasting

The Multimodal Mirage In recent years, there’s been growing enthusiasm around combining unstructured text with time series data. The promise? Textual context—say, clinical notes, weather reports, or market news—might inject rich insights into otherwise pattern-driven numerical streams. With powerful vision-language and text-generation models dominating headlines, it’s only natural to wonder: Could Large Language Models (LLMs) revolutionize time series forecasting too? A new paper from AWS researchers provides the first large-scale empirical answer. The verdict? The benefits of multimodality are far from guaranteed. In fact, across 14 datasets spanning domains from agriculture to healthcare, incorporating text often fails to outperform well-tuned unimodal baselines. Multimodal forecasting, it turns out, is more of a conditional advantage than a universal one. ...

June 30, 2025 · 3 min · Zelina

Mind Games for Machines: How Decrypto Reveals the Hidden Gaps in AI Reasoning

As large language models (LLMs) evolve from mere tools into interactive agents, they are increasingly expected to operate in multi-agent environments—collaborating, competing, and communicating not just with humans but with each other. But can they understand the beliefs, intentions, and misunderstandings of others? Welcome to the world of Theory of Mind (ToM)—and the cleverest AI benchmark you haven’t heard of: Decrypto. Cracking the Code: What is Decrypto? Inspired by the award-winning board game of the same name, Decrypto is a three-player game of secret codes and subtle hints, reimagined as a benchmark to test LLMs’ ability to coordinate and deceive. Each game features: ...

June 26, 2025 · 4 min · Zelina

Plans Before Action: What XAgent Can Learn from Pre-Act's Cognitive Blueprint

If ReAct was a spark, Pre-Act is a blueprint. In the paper Pre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM Agents, Mrinal Rawat et al. challenge the single-step cognitive paradigm of ReAct, offering instead a roadmap for how agents should plan, reason, and act—especially when tool use and workflow coherence matter. What Is ReAct? A Quick Primer The ReAct framework—short for Reasoning and Acting—is a prompting strategy that allows an LLM to alternate between thinking and doing in a loop. Each iteration follows this pattern: ...

May 18, 2025 · 4 min

Reflections in the Mirror Maze: Why LLM Reasoning Isn't Quite There Yet

In the quest for truly intelligent systems, reasoning has always stood as the ultimate benchmark. But a new paper titled “Towards a Deeper Understanding of Reasoning Capabilities in Large Language Models” by Annie Wong et al. delivers a sobering message: even the most advanced LLMs still stumble in dynamic, high-stakes environments when asked to reason, plan, and act with stability. Beyond the Benchmark Mirage Static benchmarks like math word problems or QA datasets have long given the illusion of emergent intelligence. Yet this paper dives into SmartPlay, a suite of interactive environments, to show that LLMs exhibit brittle reasoning when faced with real-time adaptation. SmartPlay is a collection of dynamic decision-making tasks designed to test planning, adaptation, and coordination under uncertainty. The team evaluates open-source models such as LLAMA3-8B, DEEPSEEK-R1-14B, and LLAMA3.3-70B on tasks involving spatial coordination, opponent modeling, and planning. The result? Larger models perform better—but only to a point. Strategic prompting can help smaller models, but also introduces volatility. ...

May 17, 2025 · 4 min

Flashcards for Giants: How RAL Lets Large Models Learn Without Fine-Tuning

Cognaptus Insights introduces Retrieval-Augmented Learning (RAL), a new approach proposed by Zongyuan Li et al.¹, allowing large language models (LLMs) to autonomously enhance their decision-making capabilities without adjusting model parameters through gradient updates or fine-tuning. Understanding Retrieval-Augmented Learning (RAL) RAL is designed for situations where fine-tuning large models like GPT-3.5 or GPT-4 is impractical. It leverages structured memory and dynamic prompt engineering, enabling models to autonomously refine their responses based on previous interactions and validations. ...

May 6, 2025 · 4 min

Rules of Engagement: Why LLMs Need Logic to Plan

Rules of Engagement: Why LLMs Need Logic to Plan When it comes to language generation, large language models (LLMs) like GPT-4o are top of the class. But ask them to reason through a complex plan — such as reorganizing a logistics network or optimizing staff scheduling — and their performance becomes unreliable. That’s the central finding from ACPBench Hard (Kokel et al., 2025), a new benchmark from IBM Research that tests unrestrained reasoning about action, change, and planning. ...

April 2, 2025 · 4 min

How Ultra-Large Context Windows Challenge RAG

Gemini 2.5 and the Rise of the 2 Million Token Era In March 2025, Google introduced Gemini 2.5 Pro with a 2 million token context window, marking a major milestone in the capabilities of language models. While this remains an experimental and high-cost frontier, it opens the door to new possibilities. To put this in perspective (approximate values, depending on tokenizer): 📖 The entire King James Bible: ~785,000 tokens 🎭 All of Shakespeare’s plays: ~900,000 tokens 📚 A full college textbook: ~500,000–800,000 tokens This means Gemini 2.5 could, in theory, process multiple entire books or large document repositories in one go—though with substantial compute and memory costs that make practical deployment currently limited. ...

March 29, 2025 · 3 min · Cognaptus Insights