Cover image

Paging Dr. Model: When AI Runs the Workup

What if the AI didn’t just answer a question—it ordered the right tests, asked for the right observations, and stopped when it had enough to call the case? A new paper introduces DxDirector-7B, a 7B-parameter medical LLM trained to act as the director of care, not the assistant. Instead of waiting for a physician to assemble clean inputs, the model starts from the patient’s vague chief complaint (e.g., “tummy pain and tired”) and then plans the diagnostic pathway, requesting only those clinician actions that software cannot perform (physical exams, labs, imaging). The goal is twofold: maximize diagnostic accuracy and minimize human workload. ...

August 18, 2025 · 4 min · Zelina
Cover image

From Chaos to Care: Structuring LLMs with Clinical Guidelines

Modern oncology is an overwhelming cognitive battlefield: clinicians face decades of fragmented notes, tests, and treatment episodes, scattered across multiple languages and formats. Large Language Models (LLMs) promise relief—but without careful design, they often collapse under the weight of these chaotic Electronic Health Records (EHRs), hallucinate unsafe recommendations, or fail to reason over time. Enter CliCARE: a meticulously designed framework that not only tames this complexity but grounds the entire decision process in clinical guidelines. Rather than stuffing raw records into long-context transformers or bolting on retrieval-augmented generation (RAG), CliCARE introduces a radically more structured approach. ...

July 31, 2025 · 3 min · Zelina