
Chunks, Units, Entities: RAG Rewired by CUE-RAG
Retrieval-Augmented Generation (RAG) has become the go-to technique for grounding large language models (LLMs) in external data. But as anyone building real-world RAG pipelines knows, there’s a growing tension between accuracy and cost. Existing graph-based RAG solutions promise richer semantics than vanilla vector stores, but suffer from two persistent issues: incomplete graphs and retrieval misalignment. The paper “CUE-RAG: Towards Accurate and Cost-Efficient Graph-Based RAG” proposes a structural rethinking. By integrating a multi-partite graph, hybrid extraction, and a query-driven iterative retriever, CUE-RAG achieves state-of-the-art accuracy while cutting indexing costs by up to 72.58% and even outperforming other methods without using any LLM tokens at all. ...