Cover image

Noise Without Regret: How Error Feedback Fixes Differentially Private Image Generation

Opening — Why this matters now Synthetic data has quietly become the backbone of privacy‑sensitive machine learning. Healthcare, surveillance, biometrics, and education all want the same thing: models that learn from sensitive images without ever touching them again. Differential privacy (DP) promises this bargain, but in practice it has been an expensive one. Every unit of privacy protection tends to shave off visual fidelity, diversity, or downstream usefulness. ...

January 22, 2026 · 4 min · Zelina
Cover image

When Diffusion Learns How to Open Drawers

Opening — Why this matters now Embodied AI has a dirty secret: most simulated worlds look plausible until a robot actually tries to use them. Chairs block drawers, doors open into walls, and walkable space exists only in theory. As robotics shifts from toy benchmarks to household-scale deployment, this gap between visual realism and functional realism has become the real bottleneck. ...

January 14, 2026 · 3 min · Zelina
Cover image

Can You Spot the Bot? Why Detectability, Not Deception, Is the New AI Frontier

In an age where generative models can ace SATs, write novels, and mimic empathy, it’s no longer enough to ask, “Can an AI fool us?” The better question is: Can we still detect it when it does? That’s the premise behind the Dual Turing Test, a sharp reframing of the classic imitation game. Rather than rewarding AI for successfully pretending to be human, this framework challenges judges to reliably detect AI—even when its responses meet strict quality standards. ...

July 26, 2025 · 4 min · Zelina