Cover image

RxnBench: Reading Chemistry Like a Human (Turns Out That’s Hard)

Opening — Why this matters now Multimodal Large Language Models (MLLMs) have become impressively fluent readers of the world. They can caption images, parse charts, and answer questions about documents that would once have required a human analyst and a strong coffee. Naturally, chemistry was next. But chemistry does not speak in sentences. It speaks in arrows, wedges, dashed bonds, cryptic tables, and reaction schemes buried three pages away from their explanations. If we want autonomous “AI chemists,” the real test is not trivia or SMILES strings — it is whether models can read actual chemical papers. ...

December 31, 2025 · 4 min · Zelina
Cover image

Think Wide, Then Think Hard: Forcing LLMs to Be Creative (On Purpose)

Opening — Why this matters now Large language models are prolific. Unfortunately, they are also boring in a very specific way. Give an LLM a constrained task—generate a programming problem, write a quiz, design an exercise—and it will reliably produce something correct, polite, and eerily similar to everything it has produced before. Change the temperature, swap the model, even rotate personas, and the output still clusters around the same conceptual center. ...

December 30, 2025 · 4 min · Zelina
Cover image

When Models Learn to Forget: Why Memorization Isn’t the Same as Intelligence

Opening — Why this matters now Large language models are getting better at everything—reasoning, coding, writing, even pretending to think. Yet beneath the polished surface lies an old, uncomfortable question: are these models learning, or are they remembering? The distinction used to be academic. It no longer is. As models scale, so does the risk that they silently memorize fragments of their training data—code snippets, proprietary text, personal information—then reproduce them when prompted. Recent research forces us to confront this problem directly, not with hand-waving assurances, but with careful isolation of where memorization lives inside a model. ...

December 26, 2025 · 3 min · Zelina
Cover image

Personas, Panels, and the Illusion of Free A/B Tests

Opening — Why this matters now Everyone wants cheaper A/B tests. Preferably ones that run overnight, don’t require legal approval, and don’t involve persuading an ops team that this experiment definitely won’t break production. LLM-based persona simulation looks like the answer. Replace humans with synthetic evaluators, aggregate their responses, and voilà—instant feedback loops. Faster iteration, lower cost, infinite scale. What could possibly go wrong? ...

December 25, 2025 · 5 min · Zelina
Cover image

When 100% Sensitivity Isn’t Safety: How LLMs Fail in Real Clinical Work

Opening — Why this matters now Healthcare AI has entered its most dangerous phase: the era where models look good enough to trust. Clinician‑level benchmark scores are routinely advertised, pilots are quietly expanding, and decision‑support tools are inching closer to unsupervised use. Yet beneath the reassuring metrics lies an uncomfortable truth — high accuracy does not equal safe reasoning. ...

December 25, 2025 · 5 min · Zelina
Cover image

When Benchmarks Rot: Why Static ‘Gold Labels’ Are a Clinical Liability

Opening — Why this matters now Clinical AI has entered an uncomfortable phase of maturity. Models are no longer failing loudly; they are failing quietly. They produce fluent answers, pass public benchmarks, and even outperform physicians on narrowly defined tasks — until you look closely at what those benchmarks are actually measuring. The paper at hand dissects one such case: MedCalc-Bench, the de‑facto evaluation standard for automated medical risk-score computation. The uncomfortable conclusion is simple: when benchmarks are treated as static truth, they slowly drift away from clinical reality — and when those same labels are reused as reinforcement-learning rewards, that drift actively teaches models the wrong thing. ...

December 23, 2025 · 4 min · Zelina
Cover image

LLMs, Gotta Think ’Em All: When Pokémon Battles Become a Serious AI Benchmark

Opening — Why this matters now For years, game AI has been split between two extremes: brittle rule-based scripts and opaque reinforcement learning behemoths. Both work—until the rules change, the content shifts, or players behave in ways the designers didn’t anticipate. Pokémon battles, deceptively simple on the surface, sit exactly at this fault line. They demand structured reasoning, probabilistic judgment, and tactical foresight, but also creativity when the meta evolves. ...

December 22, 2025 · 4 min · Zelina
Cover image

From Benchmarks to Beakers: Stress‑Testing LLMs as Scientific Co‑Scientists

Opening — Why this matters now Large Language Models have already aced exams, written code, and argued philosophy with unsettling confidence. The obvious next step was inevitable: can they do science? Not assist, not summarize—but reason, explore, and discover. The paper behind this article asks that question without romance. It evaluates LLMs not as chatbots, but as proto‑scientists, and then measures how far the illusion actually holds. ...

December 18, 2025 · 3 min · Zelina
Cover image

When LLMs Get Fatty Liver: Diagnosing AI-MASLD in Clinical AI

Opening — Why this matters now AI keeps passing medical exams, acing board-style questions, and politely explaining pathophysiology on demand. Naturally, someone always asks the dangerous follow-up: So… can we let it talk to patients now? This paper answers that question with clinical bluntness: not without supervision, and certainly not without consequences. When large language models (LLMs) are exposed to raw, unstructured patient narratives—the kind doctors hear every day—their performance degrades in a very specific, pathological way. The authors call it AI-MASLD: AI–Metabolic Dysfunction–Associated Steatotic Liver Disease. ...

December 15, 2025 · 4 min · Zelina
Cover image

Seeing Isn’t Knowing: Why Vision-Language Models Still Miss the Details

Opening — Why this matters now Vision-language models (VLMs) have become unreasonably confident. Ask them to explain a chart, reason over a meme, or narrate an image, and they respond with eloquence that borders on arrogance. Yet, beneath this fluency lies an uncomfortable truth: many of these models still struggle with seeing the right thing. ...

December 14, 2025 · 4 min · Zelina