Cover image

When Attention Learns to Breathe: Sparse Transformers for Sustainable Medical AI

Opening — Why this matters now Healthcare AI has quietly run into a contradiction. We want models that are richer—multi-modal, context-aware, clinically nuanced—yet we increasingly deploy them in environments that are poorer: fewer samples, missing modalities, limited compute, and growing scrutiny over energy use. Transformers, the industry’s favorite hammer, are powerful but notoriously wasteful. In medicine, that waste is no longer academic; it is operational. ...

December 17, 2025 · 4 min · Zelina
Cover image

When Medical AI Stops Guessing and Starts Asking

Opening — Why this matters now Medical AI has become very good at answering questions. Unfortunately, medicine rarely works that way. Pathology, oncology, and clinical decision-making are not single-query problems. They are investigative processes: observe, hypothesize, cross-check, revise, and only then conclude. Yet most medical AI benchmarks still reward models for producing one-shot answers — neat, confident, and often misleading. This mismatch is no longer academic. As multimodal models edge closer to clinical workflows, the cost of shallow reasoning becomes operational, regulatory, and ethical. ...

December 16, 2025 · 4 min · Zelina
Cover image

When Precedent Gets Nuanced: Why Legal AI Needs Dimensions, Not Just Factors

Opening — Why this matters now Legal AI has a habit of oversimplifying judgment. In the race to automate legal reasoning, we have learned how to encode rules, then factors, and eventually hierarchies of factors. But something stubborn keeps leaking through the abstractions: strength. Not whether a reason exists — but how strongly it exists. ...

December 16, 2025 · 4 min · Zelina
Cover image

When Reasoning Needs Receipts: Graphs Over Guesswork in Medical AI

Opening — Why this matters now Medical AI has a credibility problem. Not because large language models (LLMs) can’t answer medical questions—they increasingly can—but because they often arrive at correct answers for the wrong reasons. In medicine, that distinction is not academic. A shortcut that accidentally lands on the right diagnosis today can quietly institutionalize dangerous habits tomorrow. ...

December 16, 2025 · 3 min · Zelina
Cover image

When Small Models Learn From Their Mistakes: Arithmetic Reasoning Without Fine-Tuning

Opening — Why this matters now Regulated industries love spreadsheets and hate surprises. Finance, healthcare, and insurance all depend on tabular data—and all have strict constraints on where that data is allowed to go. Shipping sensitive tables to an API-hosted LLM is often a non‑starter. Yet small, on‑prem language models have a reputation problem: they speak fluently but stumble over arithmetic. ...

December 16, 2025 · 3 min · Zelina
Cover image

When the AI Becomes the Agronomist: Can Chatbots Really Replace the Literature Review?

Opening — Why this matters now Generative AI has already conquered the low-hanging fruit: emails, summaries, boilerplate code. The harder question is whether it can handle messy, domain-heavy science—where facts hide behind paywalls, nomenclature shifts over decades, and one hallucinated organism can derail an entire decision. Agriculture is a perfect stress test. Pest management decisions affect food security, biodiversity, and human health, yet the relevant evidence is scattered across thousands of papers, multiple languages, and inconsistent field conditions. If AI can reliably translate this chaos into actionable knowledge, it could change farming. If it cannot, the cost of error is sprayed across ecosystems. ...

December 15, 2025 · 4 min · Zelina
Cover image

When Tools Think Before Tokens: What TxAgent Teaches Us About Safe Agentic AI

Opening — Why this matters now Agentic AI is having a moment. From autonomous coding agents to self-directed research assistants, the industry has largely agreed on one thing: reasoning is no longer just about tokens—it’s about action. And once models are allowed to act, especially in high‑stakes domains like medicine, the question stops being can the model answer correctly? and becomes can it act correctly, step by step, without improvising itself into danger? ...

December 15, 2025 · 4 min · Zelina
Cover image

Markets That Learn (and Behave): Inside D2M’s Decentralized Data Marketplace

Opening — Why this matters now Data is abundant, collaboration is fashionable, and trust is—predictably—scarce. As firms push machine learning beyond single silos into healthcare consortia, finance alliances, and IoT swarms, the old bargain breaks down: share your data, trust the aggregator. That bargain no longer clears the market. Federated learning (FL) promised salvation by keeping data local, but quietly reintroduced a familiar villain: the trusted coordinator. Meanwhile, blockchain-based data markets solved escrow and auditability, only to discover that training neural networks on-chain is about as practical as mining Bitcoin on a smartwatch. ...

December 14, 2025 · 4 min · Zelina
Cover image

When Data Comes in Boxes: Why Hierarchies Beat Sample Hoarding

Opening — Why this matters now Modern machine learning has a data problem that money can’t easily solve: abundance without discernment. Models are no longer starved for samples; they’re overwhelmed by datasets—entire repositories, institutional archives, and web-scale collections—most of which are irrelevant, redundant, or quietly harmful. Yet the industry still behaves as if data arrives as loose grains of sand. In practice, data arrives in boxes: datasets bundled by source, license, domain, and institutional origin. Selecting the right boxes is now the binding constraint. ...

December 13, 2025 · 3 min · Zelina
Cover image

When LLMs Stop Guessing and Start Arguing: A Two‑Stage Cure for Health Misinformation

Opening — Why this matters now Health misinformation is not a fringe problem anymore. It is algorithmically amplified, emotionally charged, and often wrapped in scientific‑looking language that fools both humans and machines. Most AI fact‑checking systems respond by doing more — more retrieval, more reasoning, more prompts. This paper argues the opposite: do less first, think harder only when needed. ...

December 13, 2025 · 3 min · Zelina