
Knows the Facts, Misses the Plot: LLMs’ Knowledge–Reasoning Split in Clinical NLI
The gist A new clinical natural language inference (NLI) benchmark isolates what models know from how they reason—and the results are stark. State‑of‑the‑art LLMs ace targeted fact checks (≈92% accuracy) but crater on the actual reasoning tasks (≈25% accuracy). The collapse is most extreme in compositional grounding (≈4% accuracy), where a claim depends on multiple interacting clinical constraints (e.g., drug × dose × diagnosis × schedule). Scaling yielded fluent prose, not reliable inference. ...