When Views Go Missing, Labels Talk Back
Opening — Why this matters now In theory, multi‑view multi‑label learning is a gift: more modalities, richer semantics, better predictions. In practice, it is a recurring disappointment. Sensors fail, annotations are partial, budgets run out, and the elegant assumption of “complete views with full labels” quietly collapses. What remains is the real industrial problem: fragmented features and half‑known truths. ...