Cover image

When Views Go Missing, Labels Talk Back

Opening — Why this matters now In theory, multi‑view multi‑label learning is a gift: more modalities, richer semantics, better predictions. In practice, it is a recurring disappointment. Sensors fail, annotations are partial, budgets run out, and the elegant assumption of “complete views with full labels” quietly collapses. What remains is the real industrial problem: fragmented features and half‑known truths. ...

January 14, 2026 · 4 min · Zelina
Cover image

Click, Fail, Learn: Why BEPA Might Be the First GUI Agent That Actually Improves

Opening — Why this matters now Autonomous agents are very good at talking about tasks. They are far less competent at actually doing them—especially when “doing” involves clicking the right icon, interpreting a cluttered interface, or recovering gracefully from failure. GUI agents, in particular, suffer from a chronic problem: once they fail, they either repeat the same mistake or forget everything they once did right. ...

January 12, 2026 · 3 min · Zelina
Cover image

Seeing Too Much: When Multimodal Models Forget Privacy

Opening — Why this matters now Multimodal models have learned to see. Unfortunately, they have also learned to remember—and sometimes to reveal far more than they should. As vision-language models (VLMs) are deployed into search, assistants, surveillance-adjacent tools, and enterprise workflows, the question is no longer whether they can infer personal information from images, but how often they do so—and under what conditions they fail to hold back. ...

January 12, 2026 · 3 min · Zelina
Cover image

Speculate Smarter, Not Harder: Hierarchical Decoding Without Regret

Opening — Why this matters now LLM inference has quietly become the dominant cost center of modern AI systems. Training grabs headlines; inference drains budgets. As models scale into the tens of billions of parameters, every additional forward pass hurts — financially and operationally. Speculative decoding promised relief by letting small models run ahead and big models merely verify. But verification, ironically, became the bottleneck. ...

January 12, 2026 · 3 min · Zelina
Cover image

STACKPLANNER: When Agents Learn to Forget

Opening — Why this matters now Multi-agent systems built on large language models are having a moment. From research copilots to autonomous report generators, the promise is seductive: split a complex task into pieces, let specialized agents work in parallel, and coordinate everything with a central planner. In practice, however, these systems tend to collapse under their own cognitive weight. ...

January 12, 2026 · 4 min · Zelina
Cover image

TowerMind: When Language Models Learn That Towers Have Consequences

Opening — Why this matters now Large Language Models have become fluent planners. Ask them to outline a strategy, decompose a task, or explain why something should work, and they rarely hesitate. Yet when placed inside an environment where actions cost resources, mistakes compound, and time does not politely pause, that fluency often collapses. ...

January 12, 2026 · 4 min · Zelina
Cover image

When Debate Stops Being a Vote: DynaDebate and the Engineering of Reasoning Diversity

Opening — Why this matters now Multi-agent debate was supposed to be the antidote to brittle single-model reasoning. Add more agents, let them argue, and truth would somehow emerge from friction. In practice, what often emerges is something closer to a polite echo chamber. Despite the growing popularity of Multi-Agent Debate (MAD) frameworks, many systems quietly degenerate into majority voting over nearly identical reasoning paths. When all agents make the same mistake—just phrased slightly differently—debate becomes theater. The paper DynaDebate: Breaking Homogeneity in Multi-Agent Debate with Dynamic Path Generation tackles this problem head-on, and, refreshingly, does so by treating reasoning as an engineered process rather than a conversational one. fileciteturn0file0 ...

January 12, 2026 · 4 min · Zelina
Cover image

When Robots Guess, People Bleed: Teaching AI to Say ‘This Is Ambiguous’

Opening — Why this matters now Embodied AI has become very good at doing things. What it remains surprisingly bad at is asking a far more basic question: “Should I be doing anything at all?” In safety‑critical environments—surgical robotics, industrial automation, AR‑assisted operations—this blind spot is not academic. A robot that confidently executes an ambiguous instruction is not intelligent; it is dangerous. The paper behind Ambi3D and AmbiVer confronts this neglected layer head‑on: before grounding, planning, or acting, an agent must determine whether an instruction is objectively unambiguous in the given 3D scene. ...

January 12, 2026 · 4 min · Zelina
Cover image

Agents That Ship, Not Just Think: When LLM Self-Improvement Meets Release Engineering

Opening — Why this matters now LLM agents are no longer party tricks. They browse the web, patch production code, orchestrate APIs, and occasionally—quite creatively—break things that used to work. The industry’s instinctive response has been to make agents smarter by turning them inward: more reflection, more self-critique, more evolutionary prompt tinkering. Performance improves. Confidence does not. ...

January 11, 2026 · 4 min · Zelina
Cover image

Hook, Line, and Confidence: When Humans Outthink the Phish Bot

Opening — Why this matters now Phishing is no longer about bad grammar and suspicious links. It is about plausibility, tone, and timing. As attackers refine their craft, the detection problem quietly shifts from raw accuracy to judgment under uncertainty. That is precisely where today’s AI systems, despite their statistical confidence, begin to diverge from human reasoning. ...

January 11, 2026 · 4 min · Zelina