Reflections in the Mirror Maze: Why LLM Reasoning Isn't Quite There Yet

In the quest for truly intelligent systems, reasoning has always stood as the ultimate benchmark. But a new paper titled “Towards a Deeper Understanding of Reasoning Capabilities in Large Language Models” by Annie Wong et al. delivers a sobering message: even the most advanced LLMs still stumble in dynamic, high-stakes environments when asked to reason, plan, and act with stability. Beyond the Benchmark Mirage Static benchmarks like math word problems or QA datasets have long given the illusion of emergent intelligence. Yet this paper dives into SmartPlay, a suite of interactive environments, to show that LLMs exhibit brittle reasoning when faced with real-time adaptation. SmartPlay is a collection of dynamic decision-making tasks designed to test planning, adaptation, and coordination under uncertainty. The team evaluates open-source models such as LLAMA3-8B, DEEPSEEK-R1-14B, and LLAMA3.3-70B on tasks involving spatial coordination, opponent modeling, and planning. The result? Larger models perform better—but only to a point. Strategic prompting can help smaller models, but also introduces volatility. ...

May 17, 2025 · 4 min

From Cog to Colony: Why the AI Taxonomy Matters

The recent wave of innovation in AI systems has ushered in two distinct design paradigms—AI Agents and Agentic AI. While these may sound like mere terminological variations, the conceptual taxonomy separating them is foundational. As explored in Sapkota et al.’s comprehensive review, failing to recognize these distinctions risks not only poor architectural decisions but also suboptimal performance, misaligned safety protocols, and bloated systems. This article breaks down why this taxonomy matters, the implications of its misapplication, and how we apply these lessons to design Cognaptus’ own multi-agent framework: XAgent. ...

May 16, 2025 · 3 min

Bias Busters: Teaching Language Agents to Think Like Scientists

In the latest paper “Language Agents Mirror Human Causal Reasoning Biases” (Chen et al., 2025), researchers uncovered a persistent issue affecting even the most advanced language model (LM) agents: a disjunctive bias—a tendency to prefer “OR”-type causal explanations over equally valid or even stronger “AND”-type ones. Surprisingly, this mirrors adult human reasoning patterns and undermines the agents’ ability to draw correct conclusions in scientific-style causal discovery tasks. ...

May 15, 2025 · 3 min