Cover image

Guardrails Over Gigabytes: Making LLM Coding Agents Behave

Opening — Why this matters now AI coding agents are everywhere—and still, maddeningly unreliable. They pass unit tests they shouldn’t. They hallucinate imports. They invent APIs with confidence that would be admirable if it weren’t so destructive. The industry response has been predictable: bigger models, longer prompts, more retries. This paper proposes something less glamorous and far more effective: stop asking stochastic models to behave like deterministic software engineers. ...

December 27, 2025 · 4 min · Zelina
Cover image

Truth Machines: VeriCoT and the Next Frontier of AI Self-Verification

Why this matters now Large language models have grown remarkably persuasive—but not necessarily reliable. They often arrive at correct answers through logically unsound reasoning, a phenomenon both amusing in games and catastrophic in legal, biomedical, or policy contexts. The research paper VeriCoT: Neuro-Symbolic Chain-of-Thought Validation via Logical Consistency Checks proposes a decisive step toward addressing that flaw: a hybrid system where symbolic logic checks the reasoning of a neural model, not just its answers. ...

November 7, 2025 · 4 min · Zelina
Cover image

Memory That Fights Back: How SEDM Turns Agent Logs into Verified Knowledge

TL;DR Most “agent memory” is a junk drawer: it grows fast, gets noisy, and slows everything down. SEDM (Self‑Evolving Distributed Memory) proposes an auditable, efficiency‑first overhaul. It verifies each candidate memory by replaying the exact run in a Self‑Contained Execution Context (SCEC), assigns an initial utility‑aligned weight, and then self‑schedules what to retrieve next. The result: higher task accuracy with fewer tokens versus strong memory baselines on FEVER and HotpotQA. ...

September 17, 2025 · 5 min · Zelina