Cover image

Choosing Topics Without Counting: When LDA Meets Black-Box Intelligence

Opening — Why this matters now Topic modeling has matured into infrastructure. It quietly powers search, document clustering, policy analysis, and exploratory research pipelines across industries. Yet one deceptively simple question still wastes disproportionate time and compute: How many topics should my LDA model have? Most practitioners answer this the same way they did a decade ago: grid search, intuition, or vague heuristics (“try 50, see if it looks okay”). The paper behind this article takes a colder view. Selecting the number of topics, T, is not an art problem — it is a budget‑constrained black‑box optimization problem. Once framed that way, some uncomfortable truths emerge. ...

December 21, 2025 · 4 min · Zelina
Cover image

The Missing Link: How AI Maps Hidden Properties in Materials Science

The search for new superconductors, energy materials, and exotic compounds often begins not in a lab—but in a database. Yet despite decades of digitization, scientific knowledge remains fragmented across millions of papers, scattered ontologies, and uncharted connections. A new study from Los Alamos National Laboratory proposes an AI-driven framework that doesn’t just analyze documents—it predicts the next breakthrough. From Papers to Properties: A Three-Tiered Approach At the heart of this method is a clever ensemble pipeline that combines interpretability with predictive power. The authors start by mapping over 46,000 papers on transition-metal dichalcogenides (TMDs)—a key class of 2D materials—into a matrix of latent topics and material mentions. Then they apply a hierarchical modeling approach: ...

July 13, 2025 · 3 min · Zelina