
Mirror, Mirror in the Model: How MLLMs Learn from Their Own Mistakes
When multimodal large language models (MLLMs) like Gemini or Janus are asked to generate an image and then assess whether that image matches a prompt, you’d expect agreement. But a new study shows this harmony is often missing: the model’s own understanding branch disagrees with what its generation branch creates. This phenomenon—called self-contradiction—isn’t just an embarrassing quirk. As it turns out, it may be the most valuable feedback signal MLLMs have. ...