Cover image

Fish in the Ocean, Not Needles in the Haystack

Opening — Why this matters now Long-context multimodal models are starting to look fluent enough to pass surface-level exams on scientific papers. They answer questions correctly. They summarize convincingly. And yet, something feels off. The answers often arrive without a visible path—no trail of figures, no textual anchors, no defensible reasoning chain. In other words, the model knows what to say, but not necessarily why it is true. ...

January 18, 2026 · 4 min · Zelina
Cover image

RxnBench: Reading Chemistry Like a Human (Turns Out That’s Hard)

Opening — Why this matters now Multimodal Large Language Models (MLLMs) have become impressively fluent readers of the world. They can caption images, parse charts, and answer questions about documents that would once have required a human analyst and a strong coffee. Naturally, chemistry was next. But chemistry does not speak in sentences. It speaks in arrows, wedges, dashed bonds, cryptic tables, and reaction schemes buried three pages away from their explanations. If we want autonomous “AI chemists,” the real test is not trivia or SMILES strings — it is whether models can read actual chemical papers. ...

December 31, 2025 · 4 min · Zelina