The Missing Link: How AI Maps Hidden Properties in Materials Science

The search for new superconductors, energy materials, and exotic compounds often begins not in a lab—but in a database. Yet despite decades of digitization, scientific knowledge remains fragmented across millions of papers, scattered ontologies, and uncharted connections. A new study from Los Alamos National Laboratory proposes an AI-driven framework that doesn’t just analyze documents—it predicts the next breakthrough. From Papers to Properties: A Three-Tiered Approach At the heart of this method is a clever ensemble pipeline that combines interpretability with predictive power. The authors start by mapping over 46,000 papers on transition-metal dichalcogenides (TMDs)—a key class of 2D materials—into a matrix of latent topics and material mentions. Then they apply a hierarchical modeling approach: ...

July 13, 2025 · 3 min · Zelina

Passing Humanity's Last Exam: X-Master and the Emergence of Scientific AI Agents

Is it possible to train a language model to become a capable scientist? That provocative question lies at the heart of a new milestone in AI research. In SciMaster: Towards General-Purpose Scientific AI Agents, a team from Shanghai Jiao Tong University introduces X-Master, a tool-augmented open-source agent that has just achieved the highest score ever recorded on Humanity’s Last Exam (HLE)—surpassing even OpenAI and Google. But what makes this feat more than just a leaderboard update is how X-Master got there. Instead of training a larger model or fine-tuning on more data, the researchers innovated on agentic architecture and inference-time workflows. The result? An extensible framework that emulates the exploratory behavior of human scientists, not just their answers. ...

July 8, 2025 · 4 min · Zelina