Cover image

Judge, Jury, and Chain‑of‑Thought: Making Models StepWiser

TL;DR Generative judges that think before they judge—and are trained with online RL using stepwise labels—beat classic discriminative process reward models (PRMs). The StepWiser approach brings three wins: (1) higher accuracy at spotting the first bad step, (2) cleaner, more reliable inference via a “chunk‑reset” search that prunes bad steps while keeping overall length similar, and (3) better data selection for fine‑tuning. Why this matters (for builders and buyers) Most enterprise CoT systems fail not because they can’t produce long reasoning, but because they can’t police their own steps. Traditional PRMs act like a yes/no bouncer at each step—fast, but shallow. StepWiser reframes judging as its own reasoning task: the judge writes an analysis first, then issues a verdict. That small shift has big, practical consequences: ...

August 27, 2025 · 4 min · Zelina
Cover image

The Bullshit Dilemma: Why Smarter AI Isn't Always More Truthful

“Bullshit is speech intended to persuade without regard for truth.” – Harry Frankfurt When Alignment Goes Sideways Large Language Models (LLMs) are getting better at being helpful, harmless, and honest — or so we thought. But a recent study provocatively titled Machine Bullshit [Liang et al., 2025] suggests a disturbing paradox: the more we fine-tune these models with Reinforcement Learning from Human Feedback (RLHF), the more likely they are to generate responses that are persuasive but indifferent to truth. ...

July 11, 2025 · 4 min · Zelina

DeepSeek-R1

An open-source reasoning model achieving state-of-the-art performance in math, code, and logic tasks.

2 min