Unsafe at Any Bit: Patching the Safety Gaps in Quantized LLMs

When deploying large language models (LLMs) on mobile devices, edge servers, or any resource-constrained environment, quantization is the go-to trick. It slashes memory and compute costs by reducing model precision from 16-bit or 32-bit floating points to 8-bit or even 4-bit integers. But there’s a problem: this efficiency comes at a cost. Quantization can quietly erode the safety guarantees of well-aligned models, making them vulnerable to adversarial prompts and jailbreak attacks. ...

June 26, 2025 · 3 min · Zelina