Cover image

Train of Thought: How Long-Haul RL Unlocks LLM Reasoning Diversity

In the race to make Large Language Models (LLMs) reason like humans—or better—most researchers obsess over one thing: prompting. Chain-of-thoughts, few-shot demos, scratchpads, tools. But a new study from NVIDIA suggests something even more fundamental: it’s not just how you prompt them—it’s how long you train them. Their paper, Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training, explores how stretching reinforcement learning (RL) over time unlocks broader, more stable, and more versatile reasoning in LLMs. This isn’t just about incremental gains—it’s about escaping reasoning ruts. ...

July 18, 2025 · 3 min · Zelina
Cover image

Memory Games: The Data Contamination Crisis in Reinforcement Learning

Reinforcement learning (RL) has recently emerged as the favored path to boost large language models’ reasoning abilities. The latest headline-grabbing claim? That even random or incorrect reward signals can help models like Qwen2.5 become better reasoners. But a new paper, “Reasoning or Memorization?”, cuts through the hype—and it does so with scalpel-like precision. It reveals that what we thought were signs of emergent reasoning in Qwen2.5 might, in fact, be a textbook case of data contamination. If true, the implications are serious: much of what we thought we knew about RL-driven reasoning gains could be little more than sophisticated memory retrieval. ...

July 15, 2025 · 3 min · Zelina
Cover image

Reasoning at Scale: How DeepSeek Redefines the LLM Playbook

If GPT-4 was the apex of pretraining, DeepSeek might be the blueprint for what comes next. Released in two families—DeepSeek-V3 and DeepSeek-R1—this Chinese open-source model series isn’t just catching up to frontier LLMs. It’s reshaping the paradigm entirely. By sidestepping traditional supervised fine-tuning in favor of reinforcement learning (RL), and coupling it with memory-efficient innovations like Multi-head Latent Attention (MLA) and cost-efficient training techniques like FP8 mixed precision and fine-grained MoE, DeepSeek models demonstrate how strategic architectural bets can outpace brute-force scale. ...

July 15, 2025 · 3 min · Zelina
Cover image

Backtrack to the Future: How ASTRO Teaches LLMs to Think Like Search Algorithms

A persistent mystery in the recent surge of reasoning-augmented LLMs—like OpenAI’s o1 or DeepSeek-R1—is whether these models learn to reason through post hoc reinforcement fine-tuning, or if they were already good at it to begin with. ASTRO offers a rare counter-example: a method that imbues non-reasoner LLMs (like vanilla Llama 3) with structured reasoning behavior from scratch. Rather than rely on emergent capabilities or distillation from models that already search well, ASTRO teaches LLMs to think like search algorithms themselves, using a hybrid approach combining Monte Carlo Tree Search (MCTS), procedure cloning, chain-of-thought generation, and reinforcement learning with verifiable rewards. ...

July 7, 2025 · 3 min · Zelina
Cover image

Talk is Flight: How RALLY Bridges Language and Learning in UAV Swarms

When language models take flight, consensus becomes not just possible, but programmable. Modern UAV swarms face the daunting task of coordinating across partial observability, adversarial threats, and shifting missions. Traditional Multi-Agent Reinforcement Learning (MARL) offers adaptability, but falters when role differentiation or semantic reasoning is required. Large Language Models (LLMs), meanwhile, understand tasks and intent—but lack grounded, online learning. RALLY (Role-Adaptive LLM-Driven Yoked Navigation) is the first framework to successfully integrate these two paradigms, enabling real-time, role-aware collaboration in UAV swarms. ...

July 7, 2025 · 3 min · Zelina
Cover image

Residual Learning: How Reinforcement Learning Is Speeding Up Portfolio Math

What if the hardest part of finance isn’t prediction, but precision? Behind every real-time portfolio adjustment or split-second options quote lies a giant math problem: solving Ax = b, where A is large, sparse, and often very poorly behaved. In traditional finance pipelines, iterative solvers like GMRES or its flexible cousin FGMRES are tasked with solving these linear systems — be it from a Markowitz portfolio optimization or a discretized Black–Scholes PDE for option pricing. But when the matrix A is ill-conditioned (which it often is), convergence slows to a crawl. Preconditioning helps, but tuning these parameters is more art than science — until now. ...

July 6, 2025 · 3 min · Zelina
Cover image

Memory Over Matter: How MemAgent Redefines Long-Context Reasoning with Reinforcement Learning

Handling long documents has always been a source of frustration for large language models (LLMs). From brittle extrapolation hacks to obscure compression tricks, the field has often settled for awkward compromises. But the paper MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent boldly reframes the problem: what if LLMs could read like humans—absorbing information chunk by chunk, jotting down useful notes, and focusing on what really matters? At the heart of MemAgent is a surprisingly elegant idea: treat memory not as an architectural afterthought but as an agent policy to be trained. Instead of trying to scale attention across millions of tokens, MemAgent introduces a reinforcement-learning-shaped overwriteable memory that allows an LLM to iteratively read arbitrarily long documents in segments. It learns—through reward signals—what to keep and what to discard. ...

July 4, 2025 · 4 min · Zelina
Cover image

The Reasoning Gymnasium: How Zero-Sum Games Shape Smarter LLMs

If the future of reasoning in large language models (LLMs) doesn’t lie in human-tweaked datasets or carefully crafted benchmarks, where might it emerge? According to SPIRAL, a recent framework introduced by Bo Liu et al., the answer is clear: in games. SPIRAL (Self-Play on zero-sum games Incentivizes Reasoning via multi-Agent muLti-turn reinforcement learning) proposes that competitive, turn-based, two-player games can become a reasoning gymnasium for LLMs. It provides an automated and scalable path for cognitive skill acquisition, sidestepping human-curated data and rigid reward functions. ...

July 1, 2025 · 4 min · Zelina
Cover image

Playing with Strangers: A New Benchmark for Ad-Hoc Human-AI Teamwork

Human-AI collaboration is easy to romanticize in theory but hard to operationalize in practice. While reinforcement learning agents have dazzled us in games like Go and StarCraft, they often stumble when asked to cooperate with humans under real-world constraints: imperfect information, ambiguous signals, and no chance to train together beforehand. That’s the realm of ad-hoc teamwork—and the latest paper from Oxford’s FLAIR lab introduces a critical step forward. The Ad-Hoc Human-AI Coordination Challenge (AH2AC2) tackles this problem by leveraging Hanabi, a cooperative card game infamous among AI researchers for its subtle, communication-constrained dynamics. Unlike chess, Hanabi demands theory of mind—inferring what your teammate knows and intends based on sparse, indirect cues. It’s a Turing Test of collaboration. ...

June 27, 2025 · 4 min · Zelina
Cover image

The Joy of Many Minds: How JoyAgents-R1 Unleashes the Power of Multi-LLM Reinforcement Learning

When it comes to language model agents, more minds may not always mean merrier results. Multi-agent reinforcement learning (MARL) promises a flexible path for decomposing and solving complex tasks, but coordinating multiple large language models (LLMs) remains riddled with instability, inefficiency, and memory fragmentation. Enter JoyAgents-R1, a novel framework that proposes an elegant, scalable solution for jointly evolving heterogeneous LLM agents using Group Relative Policy Optimization (GRPO). Developed by researchers at JD.com, JoyAgents-R1 combines memory evolution, policy optimization, and clever sampling strategies to form a resilient multi-agent architecture capable of matching the performance of larger SOTA models with far fewer parameters. ...

June 25, 2025 · 3 min · Zelina