Cover image

When Your Dataset Needs a Credit Score

Opening — Why this matters now Generative AI has a trust problem, and it is not primarily about hallucinations or alignment. It is about where the data came from. As models scale, dataset opacity scales faster. We now train trillion‑parameter systems on datasets whose legal and ethical pedigree is often summarized in a single paragraph of optimistic licensing text. ...

December 29, 2025 · 4 min · Zelina
Cover image

Provenance, Not Prompts: How LLM Agents Turn Workflow Exhaust into Real-Time Intelligence

TL;DR Most teams still analyze pipelines with brittle SQL, custom scripts, and static dashboards. A new reference architecture shows how schema-driven LLM agents can read workflow provenance in real time—across edge, cloud, and HPC—answering “what/when/who/how” questions, plotting quick diagnostics, and flagging anomalies. The surprising finding: guideline-driven prompting (not just bigger context) is the single highest‑ROI upgrade. Why this matters (for operators, data leads, and CTOs) When production AI/data workflows sprawl across services (queues, training jobs, GPUs, file systems), the real telemetry isn’t in your app logs; it’s in the provenance—the metadata of tasks, inputs/outputs, scheduling, and resource usage. Turning that exhaust into live answers is how you: ...

October 1, 2025 · 4 min · Zelina