Think Wide, Then Think Hard: Forcing LLMs to Be Creative (On Purpose)
Opening — Why this matters now Large language models are prolific. Unfortunately, they are also boring in a very specific way. Give an LLM a constrained task—generate a programming problem, write a quiz, design an exercise—and it will reliably produce something correct, polite, and eerily similar to everything it has produced before. Change the temperature, swap the model, even rotate personas, and the output still clusters around the same conceptual center. ...