Cover image

Memory With a Pulse: Real-Time Feedback Loops for RAG Systems

Opening — Why this matters now Retrieval-Augmented Generation (RAG) has become the backbone of enterprise AI: your chatbot, your search assistant, your automated analyst. Yet most of them are curiously static. Once deployed, their retrieval logic is frozen—blind to evolving intent, changing knowledge, or the subtle drift of what users actually care about. The result? Diminishing relevance, confused assistants, and frustrated users. ...

November 10, 2025 · 4 min · Zelina
Cover image

Divide, Route, and Conquer: DriftMoE's Smart Take on Concept Drift

Concept drift is the curse of the real world. Models trained on yesterday’s data go stale in hours, sometimes minutes. Traditional remedies like Adaptive Random Forests (ARF) respond reactively, detecting change and resetting trees. But what if the system could instead continuously learn where to look, dynamically routing each new sample to the right expert — no drift detector required? That’s exactly the ambition behind DriftMoE, a Mixture-of-Experts framework purpose-built for online learning in non-stationary environments. Co-developed by researchers at Ireland’s CeADAR, this architecture marries lightweight neural routing with classic Hoeffding trees, achieving expert specialization as a byproduct of learning — not as a bolted-on correction. ...

July 27, 2025 · 3 min · Zelina