Cover image

Breaking the Question Apart: How Compositional Retrieval Reshapes RAG Performance

In the world of Retrieval-Augmented Generation (RAG), most systems still treat document retrieval like a popularity contest — fetch the most relevant-looking text and hope the generator can stitch the answer together. But as any manager who has tried to merge three half-baked reports knows, relevance without completeness is a recipe for failure. A new framework, Compositional Answer Retrieval (CAR), aims to fix that. Instead of asking a retrieval model to find a single “best” set of documents, CAR teaches it to think like a strategist: break the question into its components, retrieve for each, and then assemble the pieces into a coherent whole. ...

August 11, 2025 · 3 min · Zelina