Cover image

Graft and Go: How Knowledge Grafting Shrinks AI Without Shrinking Its Brain

If you’ve ever tried to run a powerful AI model on a modest device—say, a drone, a farm robot, or even a Raspberry Pi—you’ve likely hit the wall of hardware limitations. Today’s most accurate models are big, bloated, and brittle when it comes to efficiency. Enter knowledge grafting, a refreshingly biological metaphor for a novel compression technique that doesn’t just trim the fat—it transfers the muscle. Rethinking Compression: Not What to Cut, But What to Keep Traditional model optimization methods—quantization, pruning, and distillation—all try to make the best of a difficult trade-off: shrinking the model while limiting the damage to performance. These methods often fall short, especially when you push compression past 5–6x. ...

July 28, 2025 · 3 min · Zelina
Cover image

Unsafe at Any Bit: Patching the Safety Gaps in Quantized LLMs

When deploying large language models (LLMs) on mobile devices, edge servers, or any resource-constrained environment, quantization is the go-to trick. It slashes memory and compute costs by reducing model precision from 16-bit or 32-bit floating points to 8-bit or even 4-bit integers. But there’s a problem: this efficiency comes at a cost. Quantization can quietly erode the safety guarantees of well-aligned models, making them vulnerable to adversarial prompts and jailbreak attacks. ...

June 26, 2025 · 3 min · Zelina
Cover image

The Outlier Is a Lie: Quantization Breakthroughs with OSP

When it comes to deploying large language models (LLMs) efficiently, few challenges are as stubborn—and misunderstood—as activation outliers. For years, engineers have treated them like a natural disaster: unpredictable but inevitable. But what if they’re more like bad habits—learned and fixable? That’s the provocative premise behind a new framework called Outlier-Safe Pre-Training (OSP). Developed by researchers at Korea University and AIGEN Sciences, OSP proposes a simple but radical shift: instead of patching over outliers post hoc with quantization tricks, why not train the model to never form outliers in the first place? ...

June 25, 2025 · 3 min · Zelina