Cover image

The Sink That Remembers: Solving LLM Memorization Without Forgetting Everything Else

When large language models (LLMs) memorize repeated content during training—be it a phone number, a copyrighted paragraph, or a user’s personal story—the implications go beyond benign repetition. They touch the very core of AI safety, privacy, and trust. And yet, removing this memorized content after training has proven to be a devil’s bargain: anything you subtract tends to weaken the model’s overall capabilities. In their recent ICML 2025 paper, Ghosal et al. propose an elegant reframing of this problem. Rather than performing painful post-hoc surgery on a trained model, they suggest we prepare the model from the outset to isolate memorization into removable compartments—which they call Memorization Sinks (MemSinks). ...

July 15, 2025 · 4 min · Zelina
Cover image

Collapse to Forget: Turning Model Collapse into a Privacy Feature for LLMs

Machine unlearning, once a fringe technical curiosity, is fast becoming a legal and ethical imperative. With increasing regulatory demands like the GDPR’s “right to be forgotten,” AI developers are being asked a hard question: Can a large language model truly forget? A new paper from researchers at TUM and Mila provides an unexpectedly elegant answer. Instead of fighting model collapse—the phenomenon where iterative finetuning on synthetic data causes a model to forget—they propose embracing it. ...

July 8, 2025 · 4 min · Zelina