Cover image

Delta Force: How Weak Models are Secretly the Best Teachers

In the world of LLM fine-tuning, stronger usually means better. But what if we’ve been looking at supervision all wrong? A provocative new paper introduces the Delta Learning Hypothesis, arguing that LLMs can learn just as well—sometimes even better—from weak data, as long as it’s paired. The trick isn’t in the absolute quality of the training signals, but in the difference—the delta—between them. Like a coach pointing out small improvements, even bad examples can teach if they highlight how one is slightly better than another. ...

July 9, 2025 · 3 min · Zelina
Cover image

School of Thought: How Fine-Tuned Open LLMs Are Challenging the Giants in Education

Why rent a Ferrari when a fine-tuned e-bike can get you to class faster, cheaper, and on your own terms? That’s the question quietly reshaping AI in education, as shown by Solano et al. (2025) in their paper Narrowing the Gap. The authors demonstrate that with supervised fine-tuning (SFT), smaller open-source models like Llama-3.1-8B and Qwen3-4B can rival proprietary giants like GPT-4.1 when explaining C programming error messages to students. More strikingly, they achieve this with better privacy, lower cost, and pedagogical nuance that large models often overshoot. ...

July 9, 2025 · 3 min · Zelina
Cover image

Collapse to Forget: Turning Model Collapse into a Privacy Feature for LLMs

Machine unlearning, once a fringe technical curiosity, is fast becoming a legal and ethical imperative. With increasing regulatory demands like the GDPR’s “right to be forgotten,” AI developers are being asked a hard question: Can a large language model truly forget? A new paper from researchers at TUM and Mila provides an unexpectedly elegant answer. Instead of fighting model collapse—the phenomenon where iterative finetuning on synthetic data causes a model to forget—they propose embracing it. ...

July 8, 2025 · 4 min · Zelina
Cover image

Ping, Probe, Prompt: Teaching AI to Troubleshoot Networks Like a Pro

When a network fails, it doesn’t whisper its problems—it screams in silence. Packet drops, congestion, and flapping links rarely announce themselves clearly. Engineers must piece together clues scattered across logs, dashboards, and telemetry. It’s a detective game where the evidence hides behind obscure port counters and real-time topological chaos. Now imagine handing this job to a Large Language Model. That’s the bold challenge taken up by researchers in “Towards a Playground to Democratize Experimentation and Benchmarking of AI Agents for Network Troubleshooting”. They don’t just propose letting LLMs debug networks—they build an entire sandbox where AI agents can learn, act, and be judged on their troubleshooting skills. It’s not theory. It’s a working proof-of-concept. ...

July 6, 2025 · 4 min · Zelina
Cover image

Mind the Gap: Fixing the Flaws in Agentic Benchmarking

If you’ve looked at any leaderboard lately—from SWE-Bench to WebArena—you’ve probably seen impressive numbers. But how many of those reflect real capabilities of AI agents? This paper by Zhu et al. makes a bold claim: agentic benchmarks are often broken, and the way we evaluate AI agents is riddled with systemic flaws. Their response is refreshingly practical: a 33-point diagnostic called the Agentic Benchmark Checklist (ABC), designed not just to critique, but to fix the evaluation process. It’s a must-read not only for benchmark creators, but for any team serious about deploying or comparing AI agents in real-world tasks. ...

July 4, 2025 · 5 min · Zelina
Cover image

Wall Street’s New Intern: How LLMs Are Redefining Financial Intelligence

The financial industry has always prided itself on cold precision. For decades, quantitative models and spreadsheets dominated boardrooms and trading desks. But that orthodoxy is now under siege. Not from another statistical breakthrough, but from something surprisingly human-like: Large Language Models (LLMs). Recent research shows a dramatic shift in how AI—particularly LLMs like GPT-4 and LLaMA—is being integrated across financial workflows. Far from just summarizing news or answering earnings call questions, LLMs are now organizing entire investment pipelines, fine-tuning themselves on proprietary data, and even collaborating as autonomous financial agents. A recent survey by Mahdavi et al. (2025) categorized over 70 state-of-the-art systems into four distinct architectural frameworks, offering us a lens through which to assess the future of financial AI. ...

July 4, 2025 · 4 min · Zelina
Cover image

The Reasoning Gymnasium: How Zero-Sum Games Shape Smarter LLMs

If the future of reasoning in large language models (LLMs) doesn’t lie in human-tweaked datasets or carefully crafted benchmarks, where might it emerge? According to SPIRAL, a recent framework introduced by Bo Liu et al., the answer is clear: in games. SPIRAL (Self-Play on zero-sum games Incentivizes Reasoning via multi-Agent muLti-turn reinforcement learning) proposes that competitive, turn-based, two-player games can become a reasoning gymnasium for LLMs. It provides an automated and scalable path for cognitive skill acquisition, sidestepping human-curated data and rigid reward functions. ...

July 1, 2025 · 4 min · Zelina
Cover image

When Text Doesn’t Help: Rethinking Multimodality in Forecasting

The Multimodal Mirage In recent years, there’s been growing enthusiasm around combining unstructured text with time series data. The promise? Textual context—say, clinical notes, weather reports, or market news—might inject rich insights into otherwise pattern-driven numerical streams. With powerful vision-language and text-generation models dominating headlines, it’s only natural to wonder: Could Large Language Models (LLMs) revolutionize time series forecasting too? A new paper from AWS researchers provides the first large-scale empirical answer. The verdict? The benefits of multimodality are far from guaranteed. In fact, across 14 datasets spanning domains from agriculture to healthcare, incorporating text often fails to outperform well-tuned unimodal baselines. Multimodal forecasting, it turns out, is more of a conditional advantage than a universal one. ...

June 30, 2025 · 3 min · Zelina
Cover image

Mind Games for Machines: How Decrypto Reveals the Hidden Gaps in AI Reasoning

As large language models (LLMs) evolve from mere tools into interactive agents, they are increasingly expected to operate in multi-agent environments—collaborating, competing, and communicating not just with humans but with each other. But can they understand the beliefs, intentions, and misunderstandings of others? Welcome to the world of Theory of Mind (ToM)—and the cleverest AI benchmark you haven’t heard of: Decrypto. Cracking the Code: What is Decrypto? Inspired by the award-winning board game of the same name, Decrypto is a three-player game of secret codes and subtle hints, reimagined as a benchmark to test LLMs’ ability to coordinate and deceive. Each game features: ...

June 26, 2025 · 4 min · Zelina
Cover image

Plans Before Action: What XAgent Can Learn from Pre-Act's Cognitive Blueprint

If ReAct was a spark, Pre-Act is a blueprint. In the paper Pre-Act: Multi-Step Planning and Reasoning Improves Acting in LLM Agents, Mrinal Rawat et al. challenge the single-step cognitive paradigm of ReAct, offering instead a roadmap for how agents should plan, reason, and act—especially when tool use and workflow coherence matter. What Is ReAct? A Quick Primer The ReAct framework—short for Reasoning and Acting—is a prompting strategy that allows an LLM to alternate between thinking and doing in a loop. Each iteration follows this pattern: ...

May 18, 2025 · 4 min