Attention Is All the Agents Need
Opening — Why this matters now Inference-time scaling has quietly replaced parameter scaling as the most interesting battleground in large language models. With trillion-parameter training runs yielding diminishing marginal returns, the industry has pivoted toward how models think together, not just how big they are. Mixture-of-Agents (MoA) frameworks emerged as a pragmatic answer: run multiple models, stack their outputs, and hope collective intelligence beats individual brilliance. It worked—up to a point. But most MoA systems still behave like badly moderated panel discussions: everyone speaks, nobody listens. ...