When Riders Become Nodes: Mapping Fraud in Ride-Hailing with Graph Neural Networks
Opening — Why this matters now Ride-hailing fraud is no longer a fringe operational headache. It is a structural problem amplified by scale, incentives, and post-pandemic digitization. As platforms expanded, so did adversarial behavior: GPS spoofing, collusive rides, route inflation, and off-platform hire conversions quietly eroded trust and margins. Traditional fraud detection systems—feature-heavy, transaction-centric, and largely static—have struggled to keep up. The paper under review argues that the problem is not merely more fraud, but more relational fraud. And relational problems demand relational models. ...