Cover image

When Models Start to Forget: The Hidden Cost of Training LLMs Too Well

Opening — Why this matters now Large language models are getting better at everything that looks like intelligence — fluency, reasoning, instruction following. But beneath that progress, a quieter phenomenon is taking shape: models are remembering too much. The paper examined in this article does not frame memorization as a moral panic or a privacy scandal. Instead, it treats memorization as a structural side-effect of modern LLM training pipelines — something that emerges naturally once scale, optimization pressure, and data reuse collide. ...

January 3, 2026 · 3 min · Zelina
Cover image

When Models Forget on Purpose: Why Data Selection Matters More Than Data Volume

Opening — Why this matters now The AI industry has spent the last three years chanting a single mantra: more data, bigger models. It worked—until it didn’t. Performance gains are slowing, training costs are ballooning, and regulators are starting to ask uncomfortable questions about memorization, leakage, and data provenance. The paper you just uploaded steps directly into this tension and makes a slightly heretical claim: what we remove from training data may matter more than what we add. ...

December 31, 2025 · 3 min · Zelina
Cover image

Noisy but Wise: How Simple Noise Injection Beats Shortcut Learning in Medical AI

Opening — Why this matters now In a world obsessed with bigger models and cleaner data, a modest paper from the University of South Florida offers a quiet counterpoint: what if making data noisier actually makes models smarter? In medical AI—especially when dealing with limited, privacy-constrained datasets—overfitting isn’t just a technical nuisance; it’s a clinical liability. A model that learns the quirks of one hospital’s X-ray machine instead of the biomarkers of COVID-19 could fail catastrophically in another ward. ...

November 9, 2025 · 3 min · Zelina
Cover image

Spin Doctors: Why RL Fine‑Tuning Mostly Rotates, Not Reinvents

The short of it Reinforcement‑learning fine‑tuning (RL‑FT) often looks like magic: you SFT a model until it aces your dataset, panic when it forgets math or coding edge cases, then run PPO and—voilà—generalization returns. A new paper argues the mechanism isn’t mystical at all: RL‑FT mostly rotates a model’s learned directions back toward broadly useful features, rather than unlocking novel capabilities. In practical terms, cheap surgical resets (shallow layers or top‑rank components) can recover much of that OOD skill without running an expensive RL pipeline. ...

August 25, 2025 · 5 min · Zelina
Cover image

Brains with Gradients: Why Energy-Based Transformers Might Be the Future of Thinking Machines

Brains with Gradients: Why Energy-Based Transformers Might Be the Future of Thinking Machines AI models are getting better at mimicking human intuition (System 1), but what about deliberate reasoning—slow, careful System 2 Thinking? Until now, most methods required supervision (e.g., reward models, verifiers, or chain-of-thought engineering). A new architecture, Energy-Based Transformers (EBTs), changes that. It offers a radically unsupervised, architecture-level path toward models that “think,” not just react. The implications for robust generalization, dynamic reasoning, and agent-based autonomy are profound. ...

July 4, 2025 · 3 min · Zelina