When Privacy Meets Chaos: Making Federated Learning Behave
Opening — Why this matters now Federated learning was supposed to be the grown-up solution to privacy anxiety: train models collaboratively, keep data local, and everyone sleeps better at night. Then reality arrived. Real devices are heterogeneous. Real data are wildly Non-IID. And once differential privacy (DP) enters the room—armed with clipping and Gaussian noise—training dynamics start to wobble like a poorly calibrated seismograph. ...