Cover image

Skip or Split? How LLMs Can Make Old-School Planners Run Circles Around Complexity

TL;DR Classical planners crack under scale. You can rescue them with LLMs in two ways: (1) Inspire the next action, or (2) Predict an intermediate state and split the search. On diverse benchmarks (Blocks, Logistics, Depot, Mystery), the Predict route generally solves more cases with fewer LLM calls, except when domain semantics are opaque. For enterprise automation, this points to a practical recipe: decompose → predict key waypoints → verify with a trusted solver—and only fall back to “inspire” when your domain model is thin. ...

August 18, 2025 · 5 min · Zelina
Cover image

Meta-Game Theory: What a Pokémon League Taught Us About LLM Strategy

When language models battle, their strategies talk back. In a controlled Pokémon tournament, eight LLMs drafted teams, chose moves, and logged natural‑language rationales every turn. Beyond win–loss records, those explanations exposed how models reason about uncertainty, risk, and resource management—exactly the traits we want in enterprise decision agents. Why Pokémon is a serious benchmark (yes, really) Pokémon delivers the trifecta we rarely get in classic AI games: Structured complexity: 18 interacting types, clear multipliers, and crisp rules. Uncertainty that matters: imperfect information, status effects, and accuracy trade‑offs. Resource management: limited switches, finite HP, role specialization. Crucially, the action space is compact enough for language-first agents to reason step‑by‑step without search trees—so we can see the strategy, not just the score. ...

August 9, 2025 · 4 min · Zelina