
Confounder Hunters: How LLM Agents are Rewriting the Rules of Causal Inference
When Hidden Variables Become Hidden Costs In causal inference, confounders are the uninvited guests at your data party — variables that influence both treatment and outcome, quietly skewing results. In healthcare, failing to adjust for them can turn life-saving insights into misleading noise. Traditionally, finding these culprits has been the realm of domain experts, a slow and costly process that doesn’t scale well. The paper from National Sun Yat-Sen University proposes a radical alternative: put Large Language Model (LLM)-based agents into the causal inference loop. These agents don’t just crunch numbers — they reason, retrieve domain knowledge, and iteratively refine estimates, effectively acting as tireless, always-available junior experts. ...