Reasoning on a Sliding Scale: Why One Size Doesn't Fit All in CoT

The Chain-of-Thought (CoT) paradigm has become a cornerstone in improving the reasoning capabilities of large language models (LLMs). But as CoT matures, one question looms larger: Does every problem really need an elaborate chain? In this article, we dive into a new method called AdaR1, which rethinks the CoT strategy by asking not only how to reason—but how much. ...

May 1, 2025 · 4 min

Unchained Distortions: Why Step-by-Step Image Editing Breaks Down While Chain-of-Thought Shines

When large language models (LLMs) learned to think step-by-step, the world took notice. Chain-of-Thought (CoT) reasoning breathed new life into multi-step arithmetic, logic, and even moral decision-making. But as multimodal AI evolved, researchers tried to bring this paradigm into the visual world — by editing images step-by-step instead of all at once. And it failed. In the recent benchmark study Complex-Edit: CoT-Like Instruction Generation for Complexity-Controllable Image Editing Benchmark1, the authors show that CoT-style image editing — what they call sequential editing — not only fails to improve results, but often worsens them. Compared to applying a single, complex instruction all at once, breaking it into sub-instructions causes notable drops in instruction-following, identity preservation, and perceptual quality. ...

April 21, 2025 · 5 min

Cut the Fluff: Leaner AI Thinking

Cut the Fluff: Leaner AI Thinking When it comes to large language models (LLMs), brains aren’t the only thing growing—so are their waistlines. As AI systems become increasingly powerful in their ability to reason, a hidden cost emerges: token bloat, high latency, and ballooning energy consumption. One of the most well-known methods for boosting LLM intelligence is Chain-of-Thought (CoT) reasoning. CoT enables models to break down complex problems into a step-by-step sequence—much like how humans tackle math problems by writing out intermediate steps. This structured thinking approach, famously adopted by models like OpenAI’s o1 and DeepSeek-R1 (source), has proven to dramatically increase both performance and transparency. ...

April 6, 2025 · 4 min

The Slingshot Strategy: Outsmarting Giants with Small AI Models

Introduction In the race to develop increasingly powerful AI agents, it is tempting to believe that size and scale alone will determine success. OpenAI’s GPT, Anthropic’s Claude, and Google’s Gemini are all remarkable examples of cutting-edge large language models (LLMs) capable of handling complex, end-to-end tasks. But behind the marvel lies a critical commercial reality: these models are not free. For enterprise applications, the cost of inference can become a serious bottleneck. As firms aim to deploy AI across workflows, queries, and business logic, every API call adds up. This is where a more deliberate, resourceful approach can offer not just a competitive edge—but a sustainable business model. ...

March 26, 2025 · 4 min · Cognaptus Insights

DeepSeek-R1

An open-source reasoning model achieving state-of-the-art performance in math, code, and logic tasks.

2 min