Explaining the Explainers: Why Faithful XAI for LLMs Finally Needs a Benchmark
Opening — Why this matters now Explainability for large language models has reached an uncomfortable stage of maturity. We have methods. We have surveys. We even have regulatory pressure. What we do not have—at least until now—is a reliable way to tell whether an explanation actually reflects how a model behaves, rather than how comforting it sounds. ...