The Memory Advantage: When AI Agents Learn from the Past

What if your AI agent could remember the last time it made a mistake—and plan better this time? From Reaction to Reflection: Why Memory Matters Most language model agents today operate like goldfish—brilliant at reasoning in the moment, but forgetful. Whether navigating virtual environments, answering complex questions, or composing multi-step strategies, they often repeat past mistakes simply because they lack a memory of past episodes. That’s where the paper “Agentic Episodic Control” by Zhihan Xiong et al. introduces a critical upgrade to today’s LLM agents: a modular episodic memory system inspired by human cognition. Instead of treating each prompt as a blank slate, this framework allows agents to recall, adapt, and refine prior reasoning paths—without retraining the underlying model. ...

June 3, 2025 · 3 min

When Streams Cross Wires: Can New AI Models Plug into Old Data Flows?

“Every technical revolution rewires the old system—but does it fry the whole board or just swap out the chips?” The enterprise tech stack is bracing for another seismic shift. At the heart of it lies a crucial question: Can today’s emerging AI models—agentic, modular, stream-driven—peacefully integrate with yesterday’s deterministic data flows, or will they inevitably upend them? The Legacy Backbone: Rigid Yet Reliable Enterprise data architecture is built on linear pipelines: extract, transform, load (ETL); batch jobs; pre-defined triggers. These pipelines are optimized for reliability, auditability, and control. Every data flow is modeled like a supply chain: predictable, slow-moving, and deeply interconnected with compliance and governance layers. ...

April 14, 2025 · 4 min

Case Closed: How CBR-LLMs Unlock Smarter Business Automation

What if your business processes could think like your most experienced employee—recalling similar past cases, adapting on the fly, and explaining every decision? Welcome to the world of CBR-augmented LLMs: where Large Language Models meet Case-Based Reasoning to bring Business Process Automation (BPA) to a new cognitive level. From Black Box to Playbook Traditional LLM agents often act like black boxes: smart, fast, but hard to explain. Meanwhile, legacy automation tools follow strict, rule-based scripts that struggle when exceptions pop up. ...

April 10, 2025 · 4 min

Judge, Jury, and GPT: Bringing Courtroom Rigor to Business Automation

In the high-stakes world of business process automation (BPA), it’s not enough for AI agents to just complete tasks—they need to complete them correctly, consistently, and transparently. At Cognaptus, we believe in treating automation with the same scrutiny you’d expect from a court of law. That’s why we’re introducing CognaptusJudge, our novel framework for evaluating business automation, inspired by cutting-edge research in LLM-powered web agents. ⚖️ Inspired by Online-Mind2Web Earlier this year, a research team from OSU and UC Berkeley published a benchmark titled An Illusion of Progress? Assessing the Current State of Web Agents (arXiv:2504.01382). Their findings? Many agents previously hailed as top performers were failing nearly 70% of tasks when evaluated under more realistic, human-aligned conditions. ...

April 4, 2025 · 3 min

Rules of Engagement: Why LLMs Need Logic to Plan

Rules of Engagement: Why LLMs Need Logic to Plan When it comes to language generation, large language models (LLMs) like GPT-4o are top of the class. But ask them to reason through a complex plan — such as reorganizing a logistics network or optimizing staff scheduling — and their performance becomes unreliable. That’s the central finding from ACPBench Hard (Kokel et al., 2025), a new benchmark from IBM Research that tests unrestrained reasoning about action, change, and planning. ...

April 2, 2025 · 4 min