Cover image

ASKing Smarter Questions: When Scholarly Search Learns to Explain Itself

Opening — Why this matters now Scholarly search is quietly broken. Not catastrophically — Google Scholar still works, papers still exist — but structurally. The volume of academic output has grown faster than any human’s ability to read, filter, and synthesize it. What researchers increasingly need is not more papers, but faster epistemic orientation: Where is the consensus? Where is disagreement? Which papers are actually relevant to this question? ...

December 21, 2025 · 3 min · Zelina
Cover image

Cloud Without Borders: When AI Finally Learns to Share

Opening — Why this matters now AI has never been more powerful — or more fragmented. Models are trained in proprietary clouds, deployed behind opaque APIs, and shared without any serious traceability. For science, this is a structural problem, not a technical inconvenience. Reproducibility collapses when training environments vanish, provenance is an afterthought, and “open” models arrive divorced from their data and training context. ...

December 21, 2025 · 3 min · Zelina
Cover image

Darwin, But Make It Neural: When Networks Learn to Mutate Themselves

Opening — Why this matters now Modern AI has become very good at climbing hills—provided the hill stays put and remains differentiable. But as soon as the terrain shifts, gradients stumble. Controllers break. Policies freeze. Re-training becomes ritualistic rather than intelligent. This paper asks a quietly radical question: what if adaptation itself lived inside the network? Not as a scheduler, not as a meta-optimizer bolted on top, but as part of the neural machinery that gets inherited, mutated, and selected. ...

December 21, 2025 · 3 min · Zelina
Cover image

When Agents Agree Too Much: Emergent Bias in Multi‑Agent AI Systems

Opening — Why this matters now Multi‑agent AI systems are having a moment. Debate, reflection, consensus — all the cognitive theater we associate with human committees is now being reenacted by clusters of large language models. In finance, that sounds reassuring. Multiple agents, multiple perspectives, fewer blind spots. Or so the story goes. This paper politely ruins that assumption. ...

December 21, 2025 · 4 min · Zelina
Cover image

When Rewards Learn to See: Teaching Humanoids What the Ground Looks Like

Opening — Why this matters now Humanoid robots can now run, jump, and occasionally impress investors. What they still struggle with is something more mundane: noticing the stairs before falling down them. For years, reinforcement learning (RL) has delivered impressive locomotion demos—mostly on flat floors. The uncomfortable truth is that many of these robots are, functionally speaking, blind. They walk well only because the ground behaves politely. Once the terrain becomes uneven, discontinuous, or adversarial, performance collapses. ...

December 21, 2025 · 4 min · Zelina
Cover image

When Tensors Meet Telemedicine: Diagnosing Leukemia at the Edge

Opening — Why this matters now Healthcare AI has a credibility problem. Models boast benchmark-breaking accuracy, yet quietly fall apart when moved from lab notebooks to hospital workflows. Latency, human-in-the-loop bottlenecks, and fragile classifiers all conspire against real-world deployment. Leukemia diagnosis—especially Acute Lymphocytic Leukemia (ALL)—sits right in the crosshairs of this tension: early detection saves lives, but manual microscopy is slow, subjective, and error-prone. ...

December 21, 2025 · 4 min · Zelina
Cover image

Black Boxes, White Coats: AI Epidemiology and the Art of Governing Without Understanding

Opening — Why this matters now We keep insisting that powerful AI systems must be understood before they can be trusted. That demand feels intuitively correct—and practically paralysing. Large language models now operate in medicine, finance, law, and public administration. Yet interpretability tools—SHAP, LIME, mechanistic circuit tracing—remain brittle, expensive, and increasingly disconnected from real-world deployment. The gap between how models actually behave and how we attempt to explain them is widening, not closing. ...

December 20, 2025 · 4 min · Zelina
Cover image

Prompt-to-Parts: When Language Learns to Build

Opening — Why this matters now Text-to-image was a party trick. Text-to-3D became a demo. Text-to-something you can actually assemble is where the stakes quietly change. As generative AI spills into engineering, manufacturing, and robotics, the uncomfortable truth is this: most AI-generated objects are visually plausible but physically useless. They look right, but they don’t fit, don’t connect, and certainly don’t come with instructions a human can follow. ...

December 20, 2025 · 4 min · Zelina
Cover image

Stop or Strip? Teaching Disassembly When to Quit

Opening — Why this matters now Circular economy rhetoric is everywhere. Circular economy decision-making is not. Most end-of-life products still follow a depressingly simple rule: disassemble until it hurts, or stop when the operator gets tired. The idea that we might formally decide when to stop disassembling — based on value, cost, safety, and information — remains oddly underdeveloped. This gap is no longer academic. EV batteries, e‑waste, and regulated industrial equipment are forcing operators to choose between speed, safety, and sustainability under real constraints. ...

December 20, 2025 · 4 min · Zelina
Cover image

Adversaries, Slices, and the Art of Teaching LLMs to Think

Opening — Why this matters now Large language models can already talk their way through Olympiad math, but they still stumble in embarrassingly human ways: a missed parity condition, a silent algebra slip, or a confident leap over an unproven claim. The industry’s usual fix—reward the final answer and hope the reasoning improves—has reached diminishing returns. Accuracy nudges upward, but reliability remains brittle. ...

December 19, 2025 · 4 min · Zelina